随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资...随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资源和计算时间。为加速传统散热器拓扑优化进程,在基于传统固体各向同性材料惩罚SIMP(solid isotropic material with penalization)散热器拓扑优化方法的基础上,提出一种嵌套神经网络NN(neural network)同步学习的快速迭代方法。首先,构建散热器基于编码器-解码器结构的NN预测模型,即基于散热器形貌迭代进化过程实现优化结构的快速预测;其次,将NN模型与散热器SIMP拓扑优化流程相嵌套,利用迭代过程中的中间形貌同步训练NN;最后,针对单芯片、两芯片模块结构,对比所提方法与传统迭代方法的拓扑优化结果,验证了所提NN同步学习方法的准确性和快速性。展开更多
文摘为了提高热设计的设计效率,基于热传导、流体换热、流体力学理论,对典型强迫风冷散热系统进行精确建模,对精确模型进行简化方法的研究.使用该简化热模型,可以对强迫风冷散热系统进行快速、准确的设计.采用该简化热模型设计的380 V/50 kVar SiC-MOSFET静止无功补偿器(SVG)的工业化样机,散热器表面温升误差为4.1℃(满载条件),满足工程化设计的要求.
文摘随着功率模块集成化程度的提高,其散热结构优化已成为研发中的关键。拓扑优化可通过变换散热器形貌、结构来最大化地提升散热效果,因此受到了广泛关注。但在拓扑优化过程中,每步迭代均需要计算模块与散热器温度分布,占用较庞大的计算资源和计算时间。为加速传统散热器拓扑优化进程,在基于传统固体各向同性材料惩罚SIMP(solid isotropic material with penalization)散热器拓扑优化方法的基础上,提出一种嵌套神经网络NN(neural network)同步学习的快速迭代方法。首先,构建散热器基于编码器-解码器结构的NN预测模型,即基于散热器形貌迭代进化过程实现优化结构的快速预测;其次,将NN模型与散热器SIMP拓扑优化流程相嵌套,利用迭代过程中的中间形貌同步训练NN;最后,针对单芯片、两芯片模块结构,对比所提方法与传统迭代方法的拓扑优化结果,验证了所提NN同步学习方法的准确性和快速性。