期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用改进布谷鸟算法优化多阈值图像分割
被引量:
14
1
作者
吴禄慎
程伟
胡赟
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021年第1期358-369,共12页
针对传统多阈值图像分割方法在寻找最优阈值过程中存在计算量大、计算时间长的问题,提出了一种基于改进布谷鸟算法的多阈值图像分割方法。首先,将教与学搜索策略引入布谷鸟算法,提高了算法的局部搜索能力;其次,选择当前种群中适应度值...
针对传统多阈值图像分割方法在寻找最优阈值过程中存在计算量大、计算时间长的问题,提出了一种基于改进布谷鸟算法的多阈值图像分割方法。首先,将教与学搜索策略引入布谷鸟算法,提高了算法的局部搜索能力;其次,选择当前种群中适应度值较优的精英解构建精英库并随机选择精英解指导搜索方向,强化优势经验的学习;最后,引入模拟退火机制选择鸟巢位置,有效避免了个体在寻优过程中陷入局部最优。选择了多幅不同类型的复杂多目标图像进行分割实验,并与布谷鸟算法、蛙跳算法、教与学优化算法及广义反向粒子群与引力搜索混合算法的分割结果进行对比分析。实验结果表明,该方法在分割准确性、计算时间和收敛性上均优于对比算法,能快速有效地解决复杂多目标图像的多阈值分割问题。
展开更多
关键词
图像分割
多阈值分割
布谷鸟算法
教与学
搜索
策略
精英解
模拟退火机制
原文传递
题名
应用改进布谷鸟算法优化多阈值图像分割
被引量:
14
1
作者
吴禄慎
程伟
胡赟
机构
南昌大学机电工程学院
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021年第1期358-369,共12页
基金
国家自然科学基金项目(51065021,51365037,51705229)。
文摘
针对传统多阈值图像分割方法在寻找最优阈值过程中存在计算量大、计算时间长的问题,提出了一种基于改进布谷鸟算法的多阈值图像分割方法。首先,将教与学搜索策略引入布谷鸟算法,提高了算法的局部搜索能力;其次,选择当前种群中适应度值较优的精英解构建精英库并随机选择精英解指导搜索方向,强化优势经验的学习;最后,引入模拟退火机制选择鸟巢位置,有效避免了个体在寻优过程中陷入局部最优。选择了多幅不同类型的复杂多目标图像进行分割实验,并与布谷鸟算法、蛙跳算法、教与学优化算法及广义反向粒子群与引力搜索混合算法的分割结果进行对比分析。实验结果表明,该方法在分割准确性、计算时间和收敛性上均优于对比算法,能快速有效地解决复杂多目标图像的多阈值分割问题。
关键词
图像分割
多阈值分割
布谷鸟算法
教与学
搜索
策略
精英解
模拟退火机制
Keywords
image segmentation
multilevel threshold segmentation
cuckoo search algorithm(CS)
teaching-learning search strategy
elite solution
simulated annealing mechanism
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
应用改进布谷鸟算法优化多阈值图像分割
吴禄慎
程伟
胡赟
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021
14
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部