期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于主动学习的SVM评论内容分类算法的研究
被引量:
6
1
作者
段友祥
张晓天
《计算机与数字工程》
2022年第3期608-612,共5页
随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据。这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度。在这种情况下再用传统的文本分类方法已经不能满足需求了。因此论文根...
随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据。这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度。在这种情况下再用传统的文本分类方法已经不能满足需求了。因此论文根据文本数据的特点提出了基于主动学习的SVM评论内容分类方法,该方法使用主动学习的思想将敏感词向量、k-means聚类算法和SVM分类算法结合在一起,在使用更少训练集的基础上提高文本分类的准确率。实验结果表明,使用论文提出的方法对文本进行分类,在分类时间和结果准确率方面上都得到了一定程度的提高。
展开更多
关键词
文本分类
主动学习
K-MEANS
SVM
敏感
词
向量
下载PDF
职称材料
SEMBeF:一种基于分片循环神经网络的敏感高效的恶意代码行为检测框架
被引量:
4
2
作者
詹静
范雪
+1 位作者
刘一帆
张茜
《信息安全学报》
CSCD
2019年第6期67-79,共13页
词向量和循环神经网络(Recurrent Neural Network,RNN)能够识别语义和时序信息,在自然语言识别方面中取得了巨大成功。同时,代码运行时产生的API调用序列也反映了代码的真实意图,因此我们将之应用于恶意代码识别中,期望在取得较高正确...
词向量和循环神经网络(Recurrent Neural Network,RNN)能够识别语义和时序信息,在自然语言识别方面中取得了巨大成功。同时,代码运行时产生的API调用序列也反映了代码的真实意图,因此我们将之应用于恶意代码识别中,期望在取得较高正确率的同时减少人工提取和分析代码特征工作。然而仍然存在三个问题:1)不少恶意代码故意通过随机混合调用敏感API和非敏感API破坏正常的上下文,对这两种API同等对待可能产生漏报;2)为尽可能全面收集代码行为,代码运行期间产生的API序列长度较长,这将导致RNN学习时间过长;3)经典RNN常用的softmax分类函数泛化能力不强,准确率有待提高。为了解决上述问题,本文提出了一种基于分片RNN(Sliced Recurrent Neural Network,SRNN)的敏感高效的恶意代码行为检测架构SEMBeF。在SEMBeF中,我们提出了一种安全敏感API权重增强的敏感词向量算法,使得代码表示结果既包含上下文信息又包含安全敏感权重信息;我们还提出了一种SGRU-SVM网络结构,通过并行计算大幅降低了因代码API调用序列过长引起的训练时间过长的问题,提高了检测正确率;最后针对样本平衡和网络模型超参数选择问题进行了优化,进一步提高了检测正确率。本文还实现了SEMBeF验证系统,实验表明,与其他基于经典词向量和RNN的深度学习方法以及常用的机器学习方法相比,SEMBeF不仅检测正确率最高,训练效率也得到了显著提升。其中,检测正确率和训练时间分别为99.40%和210分钟,与传统RNN相比,正确率提高了0.48%,训练时间下降了96.6%。
展开更多
关键词
恶意代码行为检测
API序列
敏感
词
向量
模型
分片循环神经网络(Sliced
Recurrent
Neural
Network
SRNN)
下载PDF
职称材料
题名
基于主动学习的SVM评论内容分类算法的研究
被引量:
6
1
作者
段友祥
张晓天
机构
中国石油大学(华东)计算机科学与技术学院
出处
《计算机与数字工程》
2022年第3期608-612,共5页
文摘
随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据。这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度。在这种情况下再用传统的文本分类方法已经不能满足需求了。因此论文根据文本数据的特点提出了基于主动学习的SVM评论内容分类方法,该方法使用主动学习的思想将敏感词向量、k-means聚类算法和SVM分类算法结合在一起,在使用更少训练集的基础上提高文本分类的准确率。实验结果表明,使用论文提出的方法对文本进行分类,在分类时间和结果准确率方面上都得到了一定程度的提高。
关键词
文本分类
主动学习
K-MEANS
SVM
敏感
词
向量
Keywords
text classification
active learning
k-means
SVM
sensitive word vector
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
SEMBeF:一种基于分片循环神经网络的敏感高效的恶意代码行为检测框架
被引量:
4
2
作者
詹静
范雪
刘一帆
张茜
机构
北京工业大学
可信计算北京市重点实验室
信息安全等级保护关键技术国家工程实验室
出处
《信息安全学报》
CSCD
2019年第6期67-79,共13页
基金
国家重点研发计划项目(No.2016YFB0800204)
国防科研试验信息安全实验室对外开放项目(No.2016XXAQ08)
国家高技术研究发展计划(No.2015AA016002)资助
文摘
词向量和循环神经网络(Recurrent Neural Network,RNN)能够识别语义和时序信息,在自然语言识别方面中取得了巨大成功。同时,代码运行时产生的API调用序列也反映了代码的真实意图,因此我们将之应用于恶意代码识别中,期望在取得较高正确率的同时减少人工提取和分析代码特征工作。然而仍然存在三个问题:1)不少恶意代码故意通过随机混合调用敏感API和非敏感API破坏正常的上下文,对这两种API同等对待可能产生漏报;2)为尽可能全面收集代码行为,代码运行期间产生的API序列长度较长,这将导致RNN学习时间过长;3)经典RNN常用的softmax分类函数泛化能力不强,准确率有待提高。为了解决上述问题,本文提出了一种基于分片RNN(Sliced Recurrent Neural Network,SRNN)的敏感高效的恶意代码行为检测架构SEMBeF。在SEMBeF中,我们提出了一种安全敏感API权重增强的敏感词向量算法,使得代码表示结果既包含上下文信息又包含安全敏感权重信息;我们还提出了一种SGRU-SVM网络结构,通过并行计算大幅降低了因代码API调用序列过长引起的训练时间过长的问题,提高了检测正确率;最后针对样本平衡和网络模型超参数选择问题进行了优化,进一步提高了检测正确率。本文还实现了SEMBeF验证系统,实验表明,与其他基于经典词向量和RNN的深度学习方法以及常用的机器学习方法相比,SEMBeF不仅检测正确率最高,训练效率也得到了显著提升。其中,检测正确率和训练时间分别为99.40%和210分钟,与传统RNN相比,正确率提高了0.48%,训练时间下降了96.6%。
关键词
恶意代码行为检测
API序列
敏感
词
向量
模型
分片循环神经网络(Sliced
Recurrent
Neural
Network
SRNN)
Keywords
malware behavior detection
API sequence
sensitive word vector space model
sliced recurrent neural network(SRNN)
分类号
TP309 [自动化与计算机技术—计算机系统结构]
TP18 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于主动学习的SVM评论内容分类算法的研究
段友祥
张晓天
《计算机与数字工程》
2022
6
下载PDF
职称材料
2
SEMBeF:一种基于分片循环神经网络的敏感高效的恶意代码行为检测框架
詹静
范雪
刘一帆
张茜
《信息安全学报》
CSCD
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部