期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于主动学习的SVM评论内容分类算法的研究 被引量:6
1
作者 段友祥 张晓天 《计算机与数字工程》 2022年第3期608-612,共5页
随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据。这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度。在这种情况下再用传统的文本分类方法已经不能满足需求了。因此论文根... 随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据。这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度。在这种情况下再用传统的文本分类方法已经不能满足需求了。因此论文根据文本数据的特点提出了基于主动学习的SVM评论内容分类方法,该方法使用主动学习的思想将敏感词向量、k-means聚类算法和SVM分类算法结合在一起,在使用更少训练集的基础上提高文本分类的准确率。实验结果表明,使用论文提出的方法对文本进行分类,在分类时间和结果准确率方面上都得到了一定程度的提高。 展开更多
关键词 文本分类 主动学习 K-MEANS SVM 敏感向量
下载PDF
SEMBeF:一种基于分片循环神经网络的敏感高效的恶意代码行为检测框架 被引量:4
2
作者 詹静 范雪 +1 位作者 刘一帆 张茜 《信息安全学报》 CSCD 2019年第6期67-79,共13页
词向量和循环神经网络(Recurrent Neural Network,RNN)能够识别语义和时序信息,在自然语言识别方面中取得了巨大成功。同时,代码运行时产生的API调用序列也反映了代码的真实意图,因此我们将之应用于恶意代码识别中,期望在取得较高正确... 词向量和循环神经网络(Recurrent Neural Network,RNN)能够识别语义和时序信息,在自然语言识别方面中取得了巨大成功。同时,代码运行时产生的API调用序列也反映了代码的真实意图,因此我们将之应用于恶意代码识别中,期望在取得较高正确率的同时减少人工提取和分析代码特征工作。然而仍然存在三个问题:1)不少恶意代码故意通过随机混合调用敏感API和非敏感API破坏正常的上下文,对这两种API同等对待可能产生漏报;2)为尽可能全面收集代码行为,代码运行期间产生的API序列长度较长,这将导致RNN学习时间过长;3)经典RNN常用的softmax分类函数泛化能力不强,准确率有待提高。为了解决上述问题,本文提出了一种基于分片RNN(Sliced Recurrent Neural Network,SRNN)的敏感高效的恶意代码行为检测架构SEMBeF。在SEMBeF中,我们提出了一种安全敏感API权重增强的敏感词向量算法,使得代码表示结果既包含上下文信息又包含安全敏感权重信息;我们还提出了一种SGRU-SVM网络结构,通过并行计算大幅降低了因代码API调用序列过长引起的训练时间过长的问题,提高了检测正确率;最后针对样本平衡和网络模型超参数选择问题进行了优化,进一步提高了检测正确率。本文还实现了SEMBeF验证系统,实验表明,与其他基于经典词向量和RNN的深度学习方法以及常用的机器学习方法相比,SEMBeF不仅检测正确率最高,训练效率也得到了显著提升。其中,检测正确率和训练时间分别为99.40%和210分钟,与传统RNN相比,正确率提高了0.48%,训练时间下降了96.6%。 展开更多
关键词 恶意代码行为检测 API序列 敏感向量模型 分片循环神经网络(Sliced Recurrent Neural Network SRNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部