期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多视图稀疏特征选择的架空输电线路故障原因判别
被引量:
6
1
作者
苏超
杨强
《智慧电力》
北大核心
2023年第3期96-103,共8页
日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息...
日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息区分并提取双视图故障特征,随后基于稀疏表示提出了层次多视图特征选择算法(HMVFS)。该算法引入ε-dragging扩大分类类别的标签间距,并通过Frobenius范数和l2,1范数的正则化项分别从故障视图和故障特征的高低维度实现特征选择。最后采用某地区输电线路故障数据进行对比实验,结果验证了该方法在输电线路故障原因判别的有效性和优越性。
展开更多
关键词
输电线路
故障
原因
判别
多视图学习
稀疏表示
特征选择
下载PDF
职称材料
题名
基于多视图稀疏特征选择的架空输电线路故障原因判别
被引量:
6
1
作者
苏超
杨强
机构
浙江大学电气工程学院
出处
《智慧电力》
北大核心
2023年第3期96-103,共8页
基金
国家自然科学基金资助项目(52177119)。
文摘
日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息区分并提取双视图故障特征,随后基于稀疏表示提出了层次多视图特征选择算法(HMVFS)。该算法引入ε-dragging扩大分类类别的标签间距,并通过Frobenius范数和l2,1范数的正则化项分别从故障视图和故障特征的高低维度实现特征选择。最后采用某地区输电线路故障数据进行对比实验,结果验证了该方法在输电线路故障原因判别的有效性和优越性。
关键词
输电线路
故障
原因
判别
多视图学习
稀疏表示
特征选择
Keywords
transmission line
fault-cause identification
multi-view learning
sparse representation
feature selection
分类号
TM726 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多视图稀疏特征选择的架空输电线路故障原因判别
苏超
杨强
《智慧电力》
北大核心
2023
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部