制备载(131)~I-OVA的荷正电聚乳酸-乙醇酸(PLGA/DDAB)纳米粒,探讨其在活体动物体内的生物分布与转运研究。氯胺T法对卵清蛋白(OVA)进行(131)~I标记,Sephadex G 25纯化标记抗原,纸层析法测定标记物的生物活性和体外稳定性。纳米沉淀法制...制备载(131)~I-OVA的荷正电聚乳酸-乙醇酸(PLGA/DDAB)纳米粒,探讨其在活体动物体内的生物分布与转运研究。氯胺T法对卵清蛋白(OVA)进行(131)~I标记,Sephadex G 25纯化标记抗原,纸层析法测定标记物的生物活性和体外稳定性。纳米沉淀法制备PLGA/DDAB纳米球,将其与(131)~I-OVA共混吸附,制备载(131)~I-OVA的PLGA/DDAB纳米粒。动物试验选择C57/BL6小鼠,肌肉注射载(131)~I-OVA的PLGA/DDAB纳米粒,分析(131)~I-OVA在小鼠组织器官中的分布情况,并于注射疫苗制剂后不同时间行SPECT正位静态显像,观察小鼠不同组织内放射性浓聚情况。结果显示,标记抗原经纯化后,测得(131)~I-OVA比活度达32~42μCi·μg-1,标记率达(71.92±0.08)%,放射性化学纯度为(85.94±0.15)%。标记物在新鲜血清中存放72 h后,仍保持很高的反应活性,表明标记的OVA稳定性良好。采用纳米沉淀法制备PLGA/DDAB纳米球,平均粒径、分散系数和Zeta电位分别为122.8 nm、0.084和+31.5 m V。将其与(131)~I-OVA共混吸附,抗原携载率达(89.60±0.21)%。注射载(131)~I-OVA的PLGA/DDAB纳米球疫苗制剂,与无佐剂疫苗相比,抗原在注射部位消失的速度更为缓慢。结果表明,成功制备了载(131)~I-OVA的PLGA/DDAB纳米球,生物活性较好,可用于抗原在活体动物的生物分布与转运研究。展开更多
文摘制备载(131)~I-OVA的荷正电聚乳酸-乙醇酸(PLGA/DDAB)纳米粒,探讨其在活体动物体内的生物分布与转运研究。氯胺T法对卵清蛋白(OVA)进行(131)~I标记,Sephadex G 25纯化标记抗原,纸层析法测定标记物的生物活性和体外稳定性。纳米沉淀法制备PLGA/DDAB纳米球,将其与(131)~I-OVA共混吸附,制备载(131)~I-OVA的PLGA/DDAB纳米粒。动物试验选择C57/BL6小鼠,肌肉注射载(131)~I-OVA的PLGA/DDAB纳米粒,分析(131)~I-OVA在小鼠组织器官中的分布情况,并于注射疫苗制剂后不同时间行SPECT正位静态显像,观察小鼠不同组织内放射性浓聚情况。结果显示,标记抗原经纯化后,测得(131)~I-OVA比活度达32~42μCi·μg-1,标记率达(71.92±0.08)%,放射性化学纯度为(85.94±0.15)%。标记物在新鲜血清中存放72 h后,仍保持很高的反应活性,表明标记的OVA稳定性良好。采用纳米沉淀法制备PLGA/DDAB纳米球,平均粒径、分散系数和Zeta电位分别为122.8 nm、0.084和+31.5 m V。将其与(131)~I-OVA共混吸附,抗原携载率达(89.60±0.21)%。注射载(131)~I-OVA的PLGA/DDAB纳米球疫苗制剂,与无佐剂疫苗相比,抗原在注射部位消失的速度更为缓慢。结果表明,成功制备了载(131)~I-OVA的PLGA/DDAB纳米球,生物活性较好,可用于抗原在活体动物的生物分布与转运研究。