期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进Laplace先验下的复数域多任务贝叶斯压缩感知方法
1
作者 张启雷 孙斌 《国防科技大学学报》 EI CAS CSCD 北大核心 2023年第5期150-156,共7页
为了将现有的实数域贝叶斯压缩感知方法推广至复数域,利用改进Laplace先验假设,提出了一种复数域多任务贝叶斯压缩感知(complex multitask Bayesian compressive sensing using modified Laplace priors, CMBCS-MLP)方法,消除了测量噪... 为了将现有的实数域贝叶斯压缩感知方法推广至复数域,利用改进Laplace先验假设,提出了一种复数域多任务贝叶斯压缩感知(complex multitask Bayesian compressive sensing using modified Laplace priors, CMBCS-MLP)方法,消除了测量噪声方差的影响,并推导了一种基于递归操作的快速算法。数值仿真表明:针对复数域稀疏信号重构问题,相比于现有方法,所提CMBCS-MLP方法具有更好的精确性和鲁棒性。 展开更多
关键词 贝叶斯压缩感知 多任务学习 改进laplace先验 复数域贝叶斯压缩感知
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部