期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
数据不足条件下基于改进自动编码器的变压器故障数据增强方法 被引量:22
1
作者 葛磊蛟 廖文龙 +1 位作者 王煜森 宋丽可 《电工技术学报》 EI CSCD 北大核心 2021年第S01期84-94,共11页
变压器发生故障的情况较少,使得基于机器学习的变压器故障诊断方法存在数据不足的问题。为此,提出一种基于改进自动编码器(IAE)的变压器故障数据增强方法。首先,针对传统自动编码器生成的数据有限和缺乏多样性的问题,提出改进的变压器... 变压器发生故障的情况较少,使得基于机器学习的变压器故障诊断方法存在数据不足的问题。为此,提出一种基于改进自动编码器(IAE)的变压器故障数据增强方法。首先,针对传统自动编码器生成的数据有限和缺乏多样性的问题,提出改进的变压器故障数据生成策略。其次,考虑到传统卷积神经网络的池化操作会丢失大量特征信息,构建改进的卷积神经网络(ICNN)作为故障诊断的分类器。最后,通过实际数据验证了所提方法的有效性和适应性。仿真结果表明,相对于随机过采样算法、合成少数类过采样技术及自动编码器等传统的数据增强方法,IAE能同时兼顾数据的分布和多样性特征,生成的变压器故障数据对分类器的性能提升效果最好。和传统分类器相比,ICNN在数据增强前、后都具有更高的故障诊断精度。 展开更多
关键词 数据不足 变压 故障诊断 改进自动编码
下载PDF
基于改进SAE-SOFTMAX的模拟电路故障诊断方法 被引量:16
2
作者 袁莉芬 宁暑光 +2 位作者 何怡刚 张朝龙 吕密 《电子测量与仪器学报》 CSCD 北大核心 2018年第7期36-45,共10页
针对传统神经网络存在层次太少以及梯度扩散问题,导致基于传统神经网络的模拟电路故障诊断效果不佳,提出一种基于堆叠自动编码器-柔性最大值分类器(SAE-SOFTMAX)的模拟电路故障诊断方法。通过搭建深层次SAE和SOFTMAX分类器的深度学习框... 针对传统神经网络存在层次太少以及梯度扩散问题,导致基于传统神经网络的模拟电路故障诊断效果不佳,提出一种基于堆叠自动编码器-柔性最大值分类器(SAE-SOFTMAX)的模拟电路故障诊断方法。通过搭建深层次SAE和SOFTMAX分类器的深度学习框架,利用预训练与微调的方法完成整体网络的训练。为提高网络泛化能力,使用Dropout技术对网络加以改进优化,以此提取电子电路的底层稀疏特征并完成故障模式的自动识别分类。实例研究同时给出了几种传统神经网络的诊断效果作为对比实验。实验结果说明,所提方法诊断效果与相关评价参数性能优于传统神经网络。最终得到结论,基于改进SAESOFTMAX网络架构与分层训练机制的电子电路故障诊断方法,其整体性能有所提高诊断效果更好,优于传统的神经网络故障诊断方法。 展开更多
关键词 模拟电路 故障诊断 改进堆叠自动编码 柔性最大值分类 深度学习
下载PDF
基于ISAE的磨煤机故障预测与诊断方法研究 被引量:9
3
作者 孙同敏 《煤炭工程》 北大核心 2021年第5期148-155,共8页
针对难以从火电厂实际运行数据中获得大量磨煤机故障数据,以及磨煤机精准数学模型难以求取,从而影响其故障诊断策略制定的问题,提出了一种基于简化机理模型的深度学习故障诊断算法,用于有效检测磨煤机的运行状态。基于磨煤机机理模型和... 针对难以从火电厂实际运行数据中获得大量磨煤机故障数据,以及磨煤机精准数学模型难以求取,从而影响其故障诊断策略制定的问题,提出了一种基于简化机理模型的深度学习故障诊断算法,用于有效检测磨煤机的运行状态。基于磨煤机机理模型和状态空间预测控制器,构建了闭合控制系统,通过对不同故障类型的分析和模拟,在充分接近磨煤机的实际运行状态下,获得了大量的故障数据。并通过改进堆叠自动编码器(ISAE)将模拟的故障数据与深度学习算法相结合来建立深度学习故障诊断策略,ISAE以无监督的方式逐层提取故障数据的本质特征,具有很好的学习和识别故障特征的能力,同时通过将磨煤机系统变化快速且显著的变量作为ISAE输入变量,使ISAE兼具了故障诊断和预测的能力。仿真结果也表明,提出的ISAE能够很好地检测出磨煤机的故障,故障诊断准确率高达98.46%,并能提前发出预警。 展开更多
关键词 磨煤机 机理模型 深度学习 故障诊断 改进堆叠自动编码
下载PDF
基于改进堆叠自动编码器的循环冷却水系统工艺介质温度预测控制方法 被引量:2
4
作者 左为恒 宋璐璐 《控制与决策》 EI CSCD 北大核心 2020年第12期2835-2844,共10页
循环冷却水系统中冷却供给量与工艺介质冷却需求量之间往往存在"大马拉小车"的现象,造成大量的冷却资源浪费.为了匹配冷却需求量与供给量,提高循环冷却水系统能源利用率,给出一种基于多工艺介质温度目标循环冷却水最小压差控... 循环冷却水系统中冷却供给量与工艺介质冷却需求量之间往往存在"大马拉小车"的现象,造成大量的冷却资源浪费.为了匹配冷却需求量与供给量,提高循环冷却水系统能源利用率,给出一种基于多工艺介质温度目标循环冷却水最小压差控制系统,并将深度学习引入工艺介质温度预测研究中,提出一种基于改进堆叠自动编码器(improved stacked auto encoders,ISAE)的工艺介质温度预测方法.首先,对工业现场数据进行清洗;然后,将多个自动编码器堆叠,构建深度学习网络结构,采用"逐层贪婪无监督预训练-参数微调"方法训练网络参数,并基于均方根反向传播(root mean square back propagation,RMSProp)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,利用某化工厂历史运行数据进行测试,与浅层神经网络、未改进的SAE方法进行比较,所得结果表明,所提出的ISAE方法的预测准确性高,预测的工艺介质温度平均百分比误差仅为0.85%,且泛化能力优于未改进的SAE算法. 展开更多
关键词 循环冷却水系统 工艺介质温度 预测控制 改进堆叠自动编码 深度学习 数据驱动
原文传递
基于改进堆栈降噪自动编码器的预想事故频率指标评估方法研究 被引量:30
5
作者 赵荣臻 文云峰 +4 位作者 叶希 唐权 李文沅 陈云辉 瞿小斌 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4081-4092,共12页
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多... 可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。 展开更多
关键词 一次调频 频率指标 深度学习 随机森林 改进堆栈降噪自动编码 DROPOUT 均方根反向传播优化
下载PDF
基于改进堆叠去噪自动编码器的电能质量扰动分类方法 被引量:8
6
作者 于华楠 阮筱颖 王鹤 《电力信息与通信技术》 2021年第9期1-7,共7页
针对当前电能质量扰动分类时因数据量大和特征量提取不足而造成分类精度低的问题,文章将压缩感知和深度学习结合,提出一种基于改进堆叠降噪自动编码器(Improved Stacked Denoising Autoencoders,ISDAE)的电能质量扰动分类方法。首先,将... 针对当前电能质量扰动分类时因数据量大和特征量提取不足而造成分类精度低的问题,文章将压缩感知和深度学习结合,提出一种基于改进堆叠降噪自动编码器(Improved Stacked Denoising Autoencoders,ISDAE)的电能质量扰动分类方法。首先,将原始数据经过压缩感知后得到的稀疏向量作为数据集;然后构建堆叠去噪自动编码器模型,引入Inverted Dropout技术提升网络的泛化能力,避免过拟合现象的产生,并在微调阶段引入自适应矩估计(Adaptive moment estimation,Adam)优化方法,以降低陷入局部最优的概率。最后对10种常见的电能质量扰动信号进行仿真分析,可以发现所提方法降低了需要分析的数据量,解决了传统分类算法对特征选取不充分从而造成分类效率低的问题,并在一定程度上提升模型的鲁棒性。 展开更多
关键词 电能质量 扰动分类 压缩感知 稀疏向量 改进堆叠降噪自动编码
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部