期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
1
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合尺度波动散布 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部