当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连...当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连续最小值跟踪算法取代最小值统计算法,打破求解最小值受窗长影响的现状,减少跟踪时延;提出一种基于语音存在概率的偏差补偿函数模型,偏差补偿的大小由各个频带决定。实验结果表明,不管是平稳还是非平稳噪声环境,改进后的算法都能有效提高增强后语音的质量。展开更多
文摘当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连续最小值跟踪算法取代最小值统计算法,打破求解最小值受窗长影响的现状,减少跟踪时延;提出一种基于语音存在概率的偏差补偿函数模型,偏差补偿的大小由各个频带决定。实验结果表明,不管是平稳还是非平稳噪声环境,改进后的算法都能有效提高增强后语音的质量。