期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
时变转速下基于改进图注意力网络的轴承半监督故障诊断
被引量:
3
1
作者
邵海东
颜深
+1 位作者
肖一鸣
刘翊
《电子与信息学报》
EI
CSCD
北大核心
2023年第5期1550-1558,共9页
新近的基于图神经网络(GNN)的轴承半监督故障诊断研究仍存在标签信息挖掘不充分和诊断场景较理想等问题。工程实际中,轴承经常运行于启停等时变转速工况,且故障标签样本的获取成本越发昂贵。针对以上挑战,该文提出时变转速下基于改进图...
新近的基于图神经网络(GNN)的轴承半监督故障诊断研究仍存在标签信息挖掘不充分和诊断场景较理想等问题。工程实际中,轴承经常运行于启停等时变转速工况,且故障标签样本的获取成本越发昂贵。针对以上挑战,该文提出时变转速下基于改进图注意力网络(GAT)的轴承半监督故障诊断新方法。基于K最近邻(KNN)算法和平滑假设(SA)设计伪标签传播策略,将标签信息沿边传播给分布相似的邻域样本,从而充分利用有限样本的标签信息。将每个振动频谱样本视为一个节点,构建基于节点级图注意力网络的半监督学习模型,通过注意力机制进一步挖掘代表性的轴承故障特征。将所提方法用于分析两组时变转速下轴承故障实验数据,结果表明所提方法能够在不超过2%的低标签率情况下,准确诊断轴承的不同故障模式,性能优于其他常用的图神经网络半监督学习方法。
展开更多
关键词
轴承故障诊断
改进
图
注意力
网络
时变转速
半监督学习
极低标签率
下载PDF
职称材料
题名
时变转速下基于改进图注意力网络的轴承半监督故障诊断
被引量:
3
1
作者
邵海东
颜深
肖一鸣
刘翊
机构
湖南大学机械与运载工程学院
上海市空间导航与定位技术重点实验室
国家先进轨道交通装备创新中心
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第5期1550-1558,共9页
基金
国家重点研发计划(2020YFB1712100)
国家自然科学基金(51905160)
+1 种基金
湖南省优秀青年科学基金(2021JJ20017)
上海市空间导航与定位技术重点实验室开放课题(202105)。
文摘
新近的基于图神经网络(GNN)的轴承半监督故障诊断研究仍存在标签信息挖掘不充分和诊断场景较理想等问题。工程实际中,轴承经常运行于启停等时变转速工况,且故障标签样本的获取成本越发昂贵。针对以上挑战,该文提出时变转速下基于改进图注意力网络(GAT)的轴承半监督故障诊断新方法。基于K最近邻(KNN)算法和平滑假设(SA)设计伪标签传播策略,将标签信息沿边传播给分布相似的邻域样本,从而充分利用有限样本的标签信息。将每个振动频谱样本视为一个节点,构建基于节点级图注意力网络的半监督学习模型,通过注意力机制进一步挖掘代表性的轴承故障特征。将所提方法用于分析两组时变转速下轴承故障实验数据,结果表明所提方法能够在不超过2%的低标签率情况下,准确诊断轴承的不同故障模式,性能优于其他常用的图神经网络半监督学习方法。
关键词
轴承故障诊断
改进
图
注意力
网络
时变转速
半监督学习
极低标签率
Keywords
Bearing fault diagnosis
Improved Graph ATtention network(GAT)
Time-varying speeds
Semisupervised learning
Low label rates
分类号
TH133.3 [机械工程—机械制造及自动化]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
时变转速下基于改进图注意力网络的轴承半监督故障诊断
邵海东
颜深
肖一鸣
刘翊
《电子与信息学报》
EI
CSCD
北大核心
2023
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部