期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
响应变量随机缺失下偏正态众数混合专家模型的参数估计 被引量:1
1
作者 鲁钰 吴刘仓 王格格 《应用数学》 北大核心 2023年第2期474-486,共13页
数据缺失是众多影响数据质量的因素中最常见的一种.若缺失数据处理不当,将直接影响分析结果的可靠性,进而达不到分析的目的.本文针对随机缺失偏正态数据,研究了偏正态众数混合专家模型的参数估计.将众数回归插补与聚类相结合,提出分层... 数据缺失是众多影响数据质量的因素中最常见的一种.若缺失数据处理不当,将直接影响分析结果的可靠性,进而达不到分析的目的.本文针对随机缺失偏正态数据,研究了偏正态众数混合专家模型的参数估计.将众数回归插补与聚类相结合,提出分层众数回归插补方法.利用机器学习插补和统计学插补的方法,进一步比较研究三种机器学习插补方法:支持向量机插补、随机森林插补和神经网络插补,三种统计学插补方法:分层均值插补、众数回归插补和分层众数回归插补的缺失数据处理效果.通过Monte Carlo模拟和实例分析结果表明,分层众数回归插补的优良性. 展开更多
关键词 缺失偏正态数据 众数混合专家模型 支持向量机 森林 BP神经网络 分层众数回归
下载PDF
基于链式多重插补的WOA-ELM煤与瓦斯突出预测模型 被引量:3
2
作者 温廷新 苏焕博 《中国安全生产科学技术》 CAS CSCD 北大核心 2022年第7期68-74,共7页
为了提高缺失数据下煤与瓦斯突出预测准确率,提出1种基于链式支持向量机多重插补(MICE_SVM)的鲸鱼优化算法(WOA)-极限学习机(ELM)预测模型,以淮南朱集矿区为例,选取5个煤与瓦斯突出影响指标作为模型特征,采用提出的MICE_SVM算法插补突... 为了提高缺失数据下煤与瓦斯突出预测准确率,提出1种基于链式支持向量机多重插补(MICE_SVM)的鲸鱼优化算法(WOA)-极限学习机(ELM)预测模型,以淮南朱集矿区为例,选取5个煤与瓦斯突出影响指标作为模型特征,采用提出的MICE_SVM算法插补突出事故数据中缺失值,利用WOA优选ELM输入层权值及隐含层阈值,构建煤与瓦斯突出预测模型,将插补后数据用于WOA-ELM模型的训练与测试,并与其他模型的预测效果对比。研究结果表明:MICE_SVM插补前、后的有突出数据预测准确率分别为83.02%,90.41%,MICE_SVM显著提高了有突出预测准确率,对无突出和整体的预测准确率提高不明显;数据插补后WOA优化ELM对无突出、有突出和整体的预测准确率分别为97.94%,96.25%,96.48%,较优化前分别提高了5.79%,5.84%,5.55%,数据插补后WOA-ELM为最佳预测模型。 展开更多
关键词 煤与瓦斯突出预测 缺失数据 链式支持向量机多重(MICE_SVM)方法 鲸鱼优化算法(WOA) 极限学习(ELM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部