期刊文献+
共找到32,267篇文章
< 1 2 250 >
每页显示 20 50 100
关于统计学习理论与支持向量机 被引量:2264
1
作者 张学工 《自动化学报》 EI CSCD 北大核心 2000年第1期32-42,共11页
模式识别、函数拟合及概率密度估计等都属于基于数据学习的问题,现有方法的重要基础是传统的统计学,前提是有足够多样本,当样本数目有限时难以取得理想的效果.统计学习理论(SLT)是由Vapnik等人提出的一种小样本统计理论,着重研究在小样... 模式识别、函数拟合及概率密度估计等都属于基于数据学习的问题,现有方法的重要基础是传统的统计学,前提是有足够多样本,当样本数目有限时难以取得理想的效果.统计学习理论(SLT)是由Vapnik等人提出的一种小样本统计理论,着重研究在小样本情况下的统计规律及学习方法性质.SLT为机器学习问题建立了一个较好的理论框架,也发展了一种新的通用学习算法——支持向量机(SVM),能够较好的解决小样本学习问题.目前,SLT和SVM已成为国际上机器学习领域新的研究热点.本文是一篇综述,旨在介绍SLT和SVM的基本思想、特点和研究发展现状。 展开更多
关键词 统计学理论 支持向量机 器学习 模式识别
下载PDF
支持向量机理论与算法研究综述 被引量:904
2
作者 丁世飞 齐丙娟 谭红艳 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第1期2-10,共9页
统计学习理论(statistical learning theory,SLT)是一种小样本统计理论,着重研究在小样本情况下的统计规律及学习方法性质。支持向量机(support vector machinse,SVM)是一种基于SLT的新型的机器学习方法,由于其出色的学习性能,已经成为... 统计学习理论(statistical learning theory,SLT)是一种小样本统计理论,着重研究在小样本情况下的统计规律及学习方法性质。支持向量机(support vector machinse,SVM)是一种基于SLT的新型的机器学习方法,由于其出色的学习性能,已经成为当前机器学习界的研究热点。该文系统介绍了支持向量机的理论基础,综述了传统支持向量机的主流训练算法以及一些新型的学习模型和算法,最后指出了支持向量机的研究方向与发展前景。 展开更多
关键词 FSVM GSVM 统计学习理论 支持向量机 训练算法 TSVMs
下载PDF
中文文本分类中特征抽取方法的比较研究 被引量:228
3
作者 代六玲 黄河燕 陈肇雄 《中文信息学报》 CSCD 北大核心 2004年第1期26-32,共7页
本文比较研究了在中文文本分类中特征选取方法对分类效果的影响。考察了文档频率DF、信息增益IG、互信息MI、χ2分布CHI四种不同的特征选取方法。采用支持向量机 (SVM )和KNN两种不同的分类器以考察不同抽取方法的有效性。实验结果表明 ... 本文比较研究了在中文文本分类中特征选取方法对分类效果的影响。考察了文档频率DF、信息增益IG、互信息MI、χ2分布CHI四种不同的特征选取方法。采用支持向量机 (SVM )和KNN两种不同的分类器以考察不同抽取方法的有效性。实验结果表明 ,在英文文本分类中表现良好的特征抽取方法 (IG、MI和CHI)在不加修正的情况下并不适合中文文本分类。文中从理论上分析了产生差异的原因 ,并分析了可能的矫正方法包括采用超大规模训练语料和采用组合的特征抽取方法。最后通过实验验证组合特征抽取方法的有效性。 展开更多
关键词 计算应用 中文信息处理 文本自动分类 特征抽取 支持向量机 KNN
下载PDF
短期负荷预测的支持向量机方法研究 被引量:277
4
作者 李元诚 方廷健 于尔铿 《中国电机工程学报》 EI CSCD 北大核心 2003年第6期55-59,共5页
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作... 提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。 展开更多
关键词 短期负荷预测 支持向量机 电力系统 神经网络 人工智能
下载PDF
支持向量机及其应用研究综述 被引量:185
5
作者 祁亨年 《计算机工程》 CAS CSCD 北大核心 2004年第10期6-9,共4页
在分析支持向量机原理的基础上,分别从人脸检测、验证和识别、说话人/语音识别、文字/手写体识别、图像处理及其他应用研究等方面对SVM的应用研究进行了综述,并讨论了SVM的优点和不足,展望了其应用研究的前景。
关键词 支持向量机 器学习 统计学习理论
下载PDF
SVM分类核函数及参数选择比较 被引量:274
6
作者 奉国和 《计算机工程与应用》 CSCD 北大核心 2011年第3期123-124,128,共3页
支持向量机(SVM)被证实在分类领域性能良好,但其分类性能受到核函数及参数影响。讨论核函数及参数对SVM分类性能的影响,并运用交叉验证与网格搜索法进行参数优化选择,为SVM分类核函数及参数选择提供借鉴。
关键词 支持向量机 核函数 分类
下载PDF
高光谱遥感影像分类研究进展 被引量:241
7
作者 杜培军 夏俊士 +3 位作者 薛朝辉 谭琨 苏红军 鲍蕊 《遥感学报》 EI CSCD 北大核心 2016年第2期236-256,共21页
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘... 随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。 展开更多
关键词 高光谱遥感 分类 支持向量机 特征挖掘 多分类器集成
原文传递
支持向量机训练算法综述 被引量:97
8
作者 刘江华 程君实 陈佳品 《信息与控制》 CSCD 北大核心 2002年第1期45-50,共6页
本文介绍统计学习理论中最年轻的分支——支持向量机的训练算法 ,主要有三大类 :以 SVM-light为代表的分解算法、序贯分类方法和在线训练法 ,比较了各自的优缺点 ,并介绍了其它几种算法及多类分类算法 .最后指出了支持向量机具体实现的... 本文介绍统计学习理论中最年轻的分支——支持向量机的训练算法 ,主要有三大类 :以 SVM-light为代表的分解算法、序贯分类方法和在线训练法 ,比较了各自的优缺点 ,并介绍了其它几种算法及多类分类算法 .最后指出了支持向量机具体实现的方向及其在模式识别、数据挖掘。 展开更多
关键词 支持向量机 训练算法 统计学习理论 神经网络 模式识别
下载PDF
支持向量机在多类分类问题中的推广 被引量:150
9
作者 刘志刚 李德仁 +1 位作者 秦前清 史文中 《计算机工程与应用》 CSCD 北大核心 2004年第7期10-13,65,共5页
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析... 支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。 展开更多
关键词 支持向量机 多类分类 多类支持向量机
下载PDF
基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究 被引量:185
10
作者 董明 孟源源 +1 位作者 徐长响 严璋 《中国电机工程学报》 EI CSCD 北大核心 2003年第7期88-92,共5页
提出用支持向量机作为分层决策电力变压器故障诊断模型。首先通过相关统计分析,选择典型油中气体作为支持向量机输入参数,然后在深入发掘油中气体所含故障信息基础上,利用典型故障气体的相对含量在高维空间的分布特性进行变压器故障类... 提出用支持向量机作为分层决策电力变压器故障诊断模型。首先通过相关统计分析,选择典型油中气体作为支持向量机输入参数,然后在深入发掘油中气体所含故障信息基础上,利用典型故障气体的相对含量在高维空间的分布特性进行变压器故障类型诊断。该方法基于小训练样本条件下寻求最优解,具有很好的推广能力及一致性等优点,还适用 于变压器典型故障数据少的特点。文中还给出了两种不同支持向量机核函数分类结果的比较。为了提高故障诊断的正判率,该模型同时在相关性强的特征气体之间,利用K-近邻搜索聚类在最优分类面附近对分类结果进行精确逼近,使分层决策模型可靠性显著改善。计算结果表明,该模型具有很好的分类效果。 展开更多
关键词 大型电力变压器 故障诊断模型 支持向量机 溶解气体分析 绝缘油
下载PDF
用于回归估计的支持向量机方法 被引量:140
11
作者 杜树新 吴铁军 《系统仿真学报》 CAS CSCD 2003年第11期1580-1585,1633,共7页
用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减... 用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了n-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减少计算复杂性的分解法、SMO及增量学习算法。在非线性系统参数辨识、预测预报、建模与控制研究中,支持向量机是很有发展前途的研究方法。 展开更多
关键词 支持向量机 回归估计 预测预报 建模与控制
下载PDF
模式识别中的支持向量机方法 被引量:118
12
作者 杜树新 吴铁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第5期521-527,共7页
针对模式识别问题,描述了支持向量机的基本思想,着重讨论了ν-SVM、最小二乘SVM、加权SVM和直接SVM等新的支持向量机方法,用于降低训练时间和减少计算复杂性的海量样本数据训练算法分块法、分解法,提高泛化能力的模型选择方法,以及逐一... 针对模式识别问题,描述了支持向量机的基本思想,着重讨论了ν-SVM、最小二乘SVM、加权SVM和直接SVM等新的支持向量机方法,用于降低训练时间和减少计算复杂性的海量样本数据训练算法分块法、分解法,提高泛化能力的模型选择方法,以及逐一鉴别法、一一区分法、M-ary分类法、一次性求解等多类别分类方法.最后给出了污水生化处理过程运行状态监控的多类别分类实例.作为结构风险最小化准则的具体实现,支持向量机具有全局最优性和较好的泛化能力. 展开更多
关键词 模式识别 支持向量机 泛化能力 分类方法 海量样本数据训练算法分块法 分解法 模型选择方法
下载PDF
支持向量机理论及算法研究综述 被引量:200
13
作者 汪海燕 黎建辉 杨风雷 《计算机应用研究》 CSCD 北大核心 2014年第5期1281-1286,共6页
介绍了SVM的理论基础和它的多种主要算法及这些算法的利弊与发展现状,并介绍了SVM在现实生活中的应用原理及应用现状。最后分析了SVM在发展中的不足之处,指出了其研究方向及前景,并提出在分布式支持向量机这个方向上可以进行更深层次的... 介绍了SVM的理论基础和它的多种主要算法及这些算法的利弊与发展现状,并介绍了SVM在现实生活中的应用原理及应用现状。最后分析了SVM在发展中的不足之处,指出了其研究方向及前景,并提出在分布式支持向量机这个方向上可以进行更深层次的研究。 展开更多
关键词 支持向量机 统计学习理论 训练算法 模糊支持向量机 多分类支持向量机 模式识别
下载PDF
基于支持向量机的入侵检测系统 被引量:135
14
作者 饶鲜 董春曦 杨绍全 《软件学报》 EI CSCD 北大核心 2003年第4期798-803,共6页
目前的入侵检测系统存在着在先验知识较少的情况下推广能力差的问题.在入侵检测系统中应用支持向量机算法,使得入侵检测系统在小样本(先验知识少)的条件下仍然具有良好的推广能力.首先介绍入侵检测研究的发展概况和支持向量机的分类算法... 目前的入侵检测系统存在着在先验知识较少的情况下推广能力差的问题.在入侵检测系统中应用支持向量机算法,使得入侵检测系统在小样本(先验知识少)的条件下仍然具有良好的推广能力.首先介绍入侵检测研究的发展概况和支持向量机的分类算法,接着提出了基于支持向量机的入侵检测模型,然后以系统调用执行迹(system call trace)这类常用的入侵检测数据为例,详细讨论了该模型的工作过程,最后将计算机仿真结果与其他检测方法进行了比较.通过实验和比较发现,基于支持向量机的入侵检测系统不但所需要的先验知识远远小于其他方法,而且当检测性能相同时,该系统的训练时间将会缩短. 展开更多
关键词 支持向量机 入侵检测系统 网络安全 统计学习 模式识别 计算网络
下载PDF
处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介 被引量:180
15
作者 陈永义 俞小鼎 +1 位作者 高学浩 冯汉中 《应用气象学报》 CSCD 北大核心 2004年第3期345-354,共10页
简要介绍了近年来倍受瞩目的一种处理高度非线性分类、回归等问题的计算机学习的新方法———支持向量机 (SVM)方法 ;分析了这一方法的特点及其在数值预报产品释用及气象研究业务中的应用前景。SVM是一种有坚实理论基础的新颖的小样本... 简要介绍了近年来倍受瞩目的一种处理高度非线性分类、回归等问题的计算机学习的新方法———支持向量机 (SVM)方法 ;分析了这一方法的特点及其在数值预报产品释用及气象研究业务中的应用前景。SVM是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等 ,因此不同于现有的统计方法。从本质上看 ,它避开了从归纳到演绎的传统过程 ,实现了高效的从训练样本到预报样本的“转导推理”(transductiveinference) ,大大简化了通常的分类和回归等问题。SVM的最终决策函数只由少数的支持向量所确定 ,计算的复杂性取决于支持向量的数目 ,而不是样本空间的维数 ,这在某种意义上避免了“维数灾”。 展开更多
关键词 支持向量机 模式识别 回归分析 密度估计 天气预报
下载PDF
基于支持向量机与无监督聚类相结合的中文网页分类器 被引量:108
16
作者 李晓黎 刘继敏 史忠植 《计算机学报》 EI CSCD 北大核心 2001年第1期62-68,共7页
提出了一种将支持向量机与无监督聚类相结合的新分类算法 ,给出了一种新的网页表示方法并应用于网页分类问题 .该算法首先利用无监督聚类分别对训练集中正例和反例聚类 ,然后挑选一些例子训练 SVM并获得 SVM分类器 .任何网页可以通过比... 提出了一种将支持向量机与无监督聚类相结合的新分类算法 ,给出了一种新的网页表示方法并应用于网页分类问题 .该算法首先利用无监督聚类分别对训练集中正例和反例聚类 ,然后挑选一些例子训练 SVM并获得 SVM分类器 .任何网页可以通过比较其与聚类中心的距离决定采用无监督聚类方法或 SVM分类器进行分类 .该算法充分利用了 SVM准确率高与无监督聚类速度快的优点 .实验表明它不仅具有较高的训练效率 ,而且有很高的精确度 . 展开更多
关键词 支持向量机 无监督聚类 中文网页分类器 INTERNET 器学习
下载PDF
支持向量机的新发展 被引量:132
17
作者 许建华 张学工 李衍达 《控制与决策》 EI CSCD 北大核心 2004年第5期481-484,495,共5页
Vapnik等学者首先提出了实现统计学习理论中结构风险最小化原则的实用算法—支持向量机 ,比较成功地解决了模式分类问题 .其后 ,机器学习界兴起了研究统计学习理论和支持向量机的热潮 ,引人瞩目的研究分支有从最优化技术出发改进或改造... Vapnik等学者首先提出了实现统计学习理论中结构风险最小化原则的实用算法—支持向量机 ,比较成功地解决了模式分类问题 .其后 ,机器学习界兴起了研究统计学习理论和支持向量机的热潮 ,引人瞩目的研究分支有从最优化技术出发改进或改造支持向量机 ,依据统计学习理论和支持向量机的优点设计新的非线性机器学习算法等 .对此 ,较为系统地回顾了近 展开更多
关键词 器学习 统计学习理论 支持向量机
下载PDF
基于经验模态分解和支持向量机的短期风电功率组合预测模型 被引量:195
18
作者 叶林 刘鹏 《中国电机工程学报》 EI CSCD 北大核心 2011年第31期102-108,共7页
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解... 针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。 展开更多
关键词 经验模态分解 支持向量机 风速 短期风电功率预测 组合预测模型
下载PDF
支持向量机和最小二乘支持向量机的比较及应用研究 被引量:138
19
作者 阎威武 邵惠鹤 《控制与决策》 EI CSCD 北大核心 2003年第3期358-360,共3页
介绍和比较了支持向量机分类器和最小二乘支持向量机分类器的算法。并将支持向量机分类器和最小二乘支持向量机分类器应用于心脏病诊断 ,取得了较高的准确率。所用数据来自 U CI bench-m ark数据集。实验结果表明 。
关键词 支持向量机 分类器 诊断
下载PDF
SVM-KNN分类器——一种提高SVM分类精度的新方法 被引量:133
20
作者 李蓉 叶世伟 史忠植 《电子学报》 EI CAS CSCD 北大核心 2002年第5期745-748,共4页
本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的... 本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的基础上 ,在分类阶段计算待识别样本和最优分类超平面的距离 ,如果距离差大于给定阈值直接应用支持向量机分类 ,否则代入以每类的所有的支持向量作为代表点的K近邻分类 .数值实验证明了使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率 。 展开更多
关键词 SVM-KNN分类器 SVM分类精度 支持向量机 最近邻分类 模式识别 人工智能
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部