Lacking structural periodicity of long-range order induces unusual physical properties in metallic glasses (MGs). Specifically, the low-temperature electron transport behavior of MGs has triggered fundamental interest...Lacking structural periodicity of long-range order induces unusual physical properties in metallic glasses (MGs). Specifically, the low-temperature electron transport behavior of MGs has triggered fundamental interest in solid-state physics. MGs exist as strong scattering systems since their electron mean free paths are com? parable to the average interatomic distances . The temperature coefficient of resistivity (TCR, defined as a =(l/p)(8p/8T)) in these systems can be positive or negative depending on their Fermi level positions .展开更多
Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitro...Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods. The influences of the surface functional groups on the catalytic performance were discussed base on these results. Among all the samples tested, a nitrogen-doped sample, AC-n-US00, exhibited the best performance, the acety- lene conversion being 92% and vinyl chloride selectivity above 99% at 240 ~C and C2H2 hourly space velocity 30 h- 1. Moreover, the AC-n-US00 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76% at 210 ~C at a C2H2 hourly space velocity 50 h 1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogen- doped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
基金supported by Qian Xuesen Laboratory of Space Technology and the National Natural Science Foundation of China (51471091)
文摘Lacking structural periodicity of long-range order induces unusual physical properties in metallic glasses (MGs). Specifically, the low-temperature electron transport behavior of MGs has triggered fundamental interest in solid-state physics. MGs exist as strong scattering systems since their electron mean free paths are com? parable to the average interatomic distances . The temperature coefficient of resistivity (TCR, defined as a =(l/p)(8p/8T)) in these systems can be positive or negative depending on their Fermi level positions .
基金Supported by the National Natural Science Foundation of China(21476207)the National Basic Research Program of China(2011CB710800)
文摘Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods. The influences of the surface functional groups on the catalytic performance were discussed base on these results. Among all the samples tested, a nitrogen-doped sample, AC-n-US00, exhibited the best performance, the acety- lene conversion being 92% and vinyl chloride selectivity above 99% at 240 ~C and C2H2 hourly space velocity 30 h- 1. Moreover, the AC-n-US00 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76% at 210 ~C at a C2H2 hourly space velocity 50 h 1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogen- doped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。