期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
平衡挠积埃尔米特流形
1
作者 李淑雯 卢晓英 +1 位作者 何勇 加依达尔·里扎别克 《理论数学》 2023年第10期2908-2915,共8页
设(M1,g) 和(M2,h) 是两个埃尔米特流形,挠积埃尔米特流形(M1×fM2,G) 是赋予了埃尔米特度量 G = g+f2h 的乘积流形M1×M2,这里f是M1×M2上的光滑函数。本文推导出挠积埃尔米特流形的挠率和挠率(1,0)形式,给出埃尔米特流形(... 设(M1,g) 和(M2,h) 是两个埃尔米特流形,挠积埃尔米特流形(M1×fM2,G) 是赋予了埃尔米特度量 G = g+f2h 的乘积流形M1×M2,这里f是M1×M2上的光滑函数。本文推导出挠积埃尔米特流形的挠率和挠率(1,0)形式,给出埃尔米特流形(M1×fM2,G)平衡的充分必要条件。 展开更多
关键词 埃尔米特流形 平衡流形
下载PDF
实空间形式到四元欧氏空间的Lagrangian等距浸入(英文)
2
作者 徐翔 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期175-183,共9页
运用子流形理论从挠积角度研究了从实空间形式到四元欧氏空间的拉格朗日等距浸入,给出了实空间形式Mn(0)的挠积分解与相应的到四元欧氏空间的拉格朗日等距浸入之间的关系,构造了一个非平凡的适应拉格朗日等距浸入的实例.
关键词 拉格朗日等距浸入 四元欧氏空间
原文传递
局部射影平坦双挠积芬斯勒度量
3
作者 邓香香 何勇 +1 位作者 张娜 李淑雯 《数学进展》 CSCD 北大核心 2023年第5期939-944,共6页
设F_(1)和F_(2)分别是光滑流形M_(1)和M_(2)上的芬斯勒度量,双挠积芬斯勒度量是在乘积流形M=M_(1)×M_(2)上赋予的芬斯勒度量F^(2)=f^(2)_(2)F^(2)_(1)+f^(2)_(1)F^(2)_(2),其中f_(1)和f_(2)是乘积流形M上的非负光滑函数.本文给出... 设F_(1)和F_(2)分别是光滑流形M_(1)和M_(2)上的芬斯勒度量,双挠积芬斯勒度量是在乘积流形M=M_(1)×M_(2)上赋予的芬斯勒度量F^(2)=f^(2)_(2)F^(2)_(1)+f^(2)_(1)F^(2)_(2),其中f_(1)和f_(2)是乘积流形M上的非负光滑函数.本文给出了局部射影平坦双挠积芬斯勒度量的微分方程刻画,进而证明了局部射影平坦双挠积芬斯勒度量是局部闵可夫斯基度量. 展开更多
关键词 芬斯勒度量 局部射影平坦 局部闵可夫斯基度量
原文传递
Berwald双挠积Finsler度量 被引量:1
4
作者 邓香香 何勇 张娜 《新疆师范大学学报(自然科学版)》 2021年第2期10-16,共7页
设F_(1)和F_(2)是两个Finsler度量,f_(1)和f_(2)是乘积流形M=M_(1)×M_(2)上的非负光滑函数,双挠积Finsler度量是在乘积流形上赋予的Finsler度量F_(2)=f_(2)_(2)F_(1)^(2)+f_(1)^(2)F_(2)^(2).文章首先推导出双挠积Finsler度量的Ber... 设F_(1)和F_(2)是两个Finsler度量,f_(1)和f_(2)是乘积流形M=M_(1)×M_(2)上的非负光滑函数,双挠积Finsler度量是在乘积流形上赋予的Finsler度量F_(2)=f_(2)_(2)F_(1)^(2)+f_(1)^(2)F_(2)^(2).文章首先推导出双挠积Finsler度量的Berwald联络系数,其次给出了双挠积Finsler度量的Berwald曲率系数公式,最后得到双挠积Finsler度量是Berwald度量的充要条件,并证明了具有迷向Berwald曲率的双挠积Finsler度量是Berwald度量。 展开更多
关键词 FINSLER度量 Berwald度量 Berwald曲率 迷向Berwald曲率
下载PDF
双挠积复Finsler流形的局部对偶平坦性
5
作者 肖维 何勇 +1 位作者 栗嘉慧 邓香香 《数学进展》 CSCD 北大核心 2023年第2期371-376,共6页
设(M_(1),F_(1))和(M_(2),F_(2))是两个强凸的复Finsler流形,λ_(1)和λ_(2)是乘积流形M=M_(1)×M_(2)上的光滑实值函数,双挠积复Finsler流形(M1×(λ_(1,)λ_(2))M_(2),F)是在乘积流形上赋予了复Finsler度量F^(2)=λ_(1)^(2)F_... 设(M_(1),F_(1))和(M_(2),F_(2))是两个强凸的复Finsler流形,λ_(1)和λ_(2)是乘积流形M=M_(1)×M_(2)上的光滑实值函数,双挠积复Finsler流形(M1×(λ_(1,)λ_(2))M_(2),F)是在乘积流形上赋予了复Finsler度量F^(2)=λ_(1)^(2)F_(1)^(2)+λ_(2)^(2)F_(2)^(2)的复Finsler流形.本文给出了双挠积复Finsler流形是局部对偶平坦流形的充要条件. 展开更多
关键词 复FINSLER流形 局部对偶平坦
原文传递
弱 Berwald 双挠积 Finsler 度量 被引量:1
6
作者 邓香香 何勇 倪琪慧 《理论数学》 2021年第7期1389-1399,共11页
本文主要研究了双挠积 Finsler 度量的平均 Berwald 曲率和迷向平均 Berwald 曲率,给出了双 挠积 Finsler 度量是弱 Berwald 度量的充要条件,证明了在一定条件下具有迷向平均 Berwald 曲率的双挠积 Finsler 度量是弱 Berwald 度量。
关键词 Finsler 度量 Berwald 度量 迷向平均 Berwald 曲率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部