本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to...本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.展开更多
基金partly supported by National Natural Science Foundation of China and President Foundation of GUCAS.
文摘本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.
基金国家自然科学基金面上项目“金融高频大数据下的风险推断及其与多元标的衍生品定价和金融风险管理的交叉融合研究”(71871132)国家自然科学基金委重大研究计划重点项目“金融大数据统计推断理论与方法及应用研究”(91546202)+1 种基金中央高校基本科研业务费(批准号:CXJJ-2019-412)专项资金资助部分受到上海市数据科技与决策前沿科学研究基地(Shanghai Research Center for Data Science and Decision Technology)资助。