A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and lo...A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and low-Al-content AlG aN layer as absorption layer.The calculated results show that the designed APD can significantly reduce the breakdown voltage by almost 30%,and about sevenfold increase of maximum gain compared to the conventional Al GaN APD.The noise in designed APD is also less than that in conventional APD due to its low dark current at the breakdown voltage point.Moreover,the one-dimensional(1D)dual-periodic photonic crystal(PC)with anti-reflection coating filter is designed to achieve the solar-blind characteristic and cutoff wavelength of 282 nm is obtained.展开更多
In this paper, the effects of evaporating temperature and film thickness on the spectral transmission of MgF2/SiO antireflective coating were investigated.
The result of the evaporation of Sio/SiO2 two layer antireflection coatings monitored by the MODEL IL 400 DEPOSITION CONTROLLER is reported.A superluminescent diode with high output power is fabricated by evaporating ...The result of the evaporation of Sio/SiO2 two layer antireflection coatings monitored by the MODEL IL 400 DEPOSITION CONTROLLER is reported.A superluminescent diode with high output power is fabricated by evaporating antireflection coating on the front facet of 1.3μm buried heterostructure laser.展开更多
基金supported by Anhui University Natural Science Research Project, China (KJ2015A153)Initial research fund from Chuzhou University, China (2014qd024)+1 种基金The Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZ D2016329)the Anhui Provincial Natural Science Foundation of China under Grant (1708085MF149)
文摘A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and low-Al-content AlG aN layer as absorption layer.The calculated results show that the designed APD can significantly reduce the breakdown voltage by almost 30%,and about sevenfold increase of maximum gain compared to the conventional Al GaN APD.The noise in designed APD is also less than that in conventional APD due to its low dark current at the breakdown voltage point.Moreover,the one-dimensional(1D)dual-periodic photonic crystal(PC)with anti-reflection coating filter is designed to achieve the solar-blind characteristic and cutoff wavelength of 282 nm is obtained.
文摘In this paper, the effects of evaporating temperature and film thickness on the spectral transmission of MgF2/SiO antireflective coating were investigated.
文摘The result of the evaporation of Sio/SiO2 two layer antireflection coatings monitored by the MODEL IL 400 DEPOSITION CONTROLLER is reported.A superluminescent diode with high output power is fabricated by evaporating antireflection coating on the front facet of 1.3μm buried heterostructure laser.