-
题名基于STDP规则的脉冲神经网络研究
被引量:2
- 1
-
-
作者
庄祖江
房玉
雷建超
刘栋博
王海滨
-
机构
西华大学电气与电子信息学院
-
出处
《计算机工程》
CAS
CSCD
北大核心
2020年第9期83-88,94,共7页
-
基金
国家自然科学基金(61571371)
西华大学大健康管理促进中心项目(DJKG2019-008)。
-
文摘
人类对于生物系统信息的处理主要依赖于构成复杂神经网络的数十亿个神经元,并且信息以脉冲的形式进行传输。利用STDP学习算法构建基于LIF模型的两层脉冲神经网络结构,并对分类层算法进行改进,提出一种投票竞争机制。通过多次训练后对神经元表现类别进行竞争投票,优化同等神经元数量的网络机构在图像分类问题中的性能。在MNIST数据集上进行实验验证,结果表明,该投票竞争机制准确率达到98.1%,与同等网络规模下未采用投票竞争机制的脉冲神经网络相比,准确率平均提高了约6%,而且当神经元数目较少时,在不增加训练时间情况下,可以取得与更加复杂网络结构相同的训练结果。
-
关键词
STDP规则
脉冲神经网络
LIF模型
投票竞争机制
图像识别
-
Keywords
STDP rule
Spiking Neural Network(SNN)
LIF model
voting competition mechanism
image recognition
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-