定出了局部环上正交群中一类子群的扩群,得到了如下结果:设R是局部环,M是R的唯一极大理想,O(2m,R)为R上正交群.对R的任意理想S,G(2m,S)表示子群{A BC D∈O(2m,R)|B∈Sm×m}.如果char(R)≠2,m≥3,G(2m,0)≤X≤G(2m,M),那么存在R的理...定出了局部环上正交群中一类子群的扩群,得到了如下结果:设R是局部环,M是R的唯一极大理想,O(2m,R)为R上正交群.对R的任意理想S,G(2m,S)表示子群{A BC D∈O(2m,R)|B∈Sm×m}.如果char(R)≠2,m≥3,G(2m,0)≤X≤G(2m,M),那么存在R的理想S,使得X=G(2m,S).展开更多
文摘定出了局部环上正交群中一类子群的扩群,得到了如下结果:设R是局部环,M是R的唯一极大理想,O(2m,R)为R上正交群.对R的任意理想S,G(2m,S)表示子群{A BC D∈O(2m,R)|B∈Sm×m}.如果char(R)≠2,m≥3,G(2m,0)≤X≤G(2m,M),那么存在R的理想S,使得X=G(2m,S).