Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a brea...Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a breakthrough from traditional materials, bi- ointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials ele- gantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the inves- tigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue en- gineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent ad- vances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.展开更多
利用甲基丙烯酰氯与L-薄荷醇反应合成了甲基丙烯酸薄荷醇酯手性单体,单体通过原子转移自由基聚合(atom transfer radical polymerization,ATRP)的方法控制合成了聚甲基丙烯酸薄荷醇酯手性高分子,并对所合成聚合物的结构进行了1 H NMR,13...利用甲基丙烯酰氯与L-薄荷醇反应合成了甲基丙烯酸薄荷醇酯手性单体,单体通过原子转移自由基聚合(atom transfer radical polymerization,ATRP)的方法控制合成了聚甲基丙烯酸薄荷醇酯手性高分子,并对所合成聚合物的结构进行了1 H NMR,13 C NMR,CD和GPC的表征.结果表明,所得到的聚合物是具有窄分子量分布和光学活性的高分子.展开更多
基金the financial support of the National Natural Science Foundation of China(21104061,21275114,91127027,51173142)the National Basic Research Program of China(2013CB933002)the Fundamental Research Funds for the Central Universities(2013-YB-026)
文摘Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological process- es, which provides much inspiration for scientists to develop cbiral materials. As a breakthrough from traditional materials, bi- ointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials ele- gantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the inves- tigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue en- gineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent ad- vances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.
文摘利用甲基丙烯酰氯与L-薄荷醇反应合成了甲基丙烯酸薄荷醇酯手性单体,单体通过原子转移自由基聚合(atom transfer radical polymerization,ATRP)的方法控制合成了聚甲基丙烯酸薄荷醇酯手性高分子,并对所合成聚合物的结构进行了1 H NMR,13 C NMR,CD和GPC的表征.结果表明,所得到的聚合物是具有窄分子量分布和光学活性的高分子.