期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
一种新型多标记懒惰学习算法 被引量:39
1
作者 张敏灵 《计算机研究与发展》 EI CSCD 北大核心 2012年第11期2271-2282,共12页
在多标记学习框架下,每个样本由单个实例进行表示并同时对应于多个概念标记.已有的多标记懒惰学习算法并未充分考察样本多个标记之间的相关性,因此其泛化性能将会受到一定程度的不利影响.针对上述问题,提出一种新型多标记懒惰学习算法IM... 在多标记学习框架下,每个样本由单个实例进行表示并同时对应于多个概念标记.已有的多标记懒惰学习算法并未充分考察样本多个标记之间的相关性,因此其泛化性能将会受到一定程度的不利影响.针对上述问题,提出一种新型多标记懒惰学习算法IMLLA.该算法首先找出测试样本在训练集中与各个概念类对应的近邻样本,然后基于近邻样本的多标记信息构造一个标记计数向量,并提交给已训练的线性分类器进行预测.由于IMLLA在对每个概念类进行预测时利用了蕴含于其他概念类中的信息,因而充分考察了样本多个标记之间的相关性.在人工数据集以及真实世界数据集上的实验表明,IMLLA算法的性能显著优于常用的多标记学习算法. 展开更多
关键词 机器学习 多标记学习 懒惰学习 功能基因组学 图像分类
下载PDF
一种基于局部加权回归的分类方法 被引量:4
2
作者 徐晓丹 刘华文 +1 位作者 姚明海 刘日仙 《计算机工程与科学》 CSCD 北大核心 2015年第10期1959-1964,共6页
分类是数据挖掘和数据分析中最有应用价值的技术之一。传统的积极学习方法需要预先对模型空间进行假设,并且没有充分考虑到实例之间的相关性,其泛化能力将会受到一定程度的影响。针对上述问题,提出了一种基于新型映射关系的局部加权回... 分类是数据挖掘和数据分析中最有应用价值的技术之一。传统的积极学习方法需要预先对模型空间进行假设,并且没有充分考虑到实例之间的相关性,其泛化能力将会受到一定程度的影响。针对上述问题,提出了一种基于新型映射关系的局部加权回归方法 MLWR。该算法首先找出测试样本在训练集中的近邻样本,然后建立测试样本和近邻样本的回归函数,根据建立的回归模型和近邻样本的标签,计算得到测试样本的标签。实验与当前流行的多种分类方法在UCI的9个数据集上进行测试。实验结果表明我们的方法能有效地提高分类精度,对较大样本数据也有较好的适用性。 展开更多
关键词 分类 映射关系 局部加权回归 K-NN 懒惰学习
下载PDF
基于粒计算的多标签懒惰学习算法 被引量:2
3
作者 赵海峰 余强 曹俞旦 《计算机科学》 CSCD 北大核心 2014年第12期160-163,共4页
多标签学习用于处理一个样本同时拥有多个标签的问题。已有的多标签懒惰学习算法IMLLA未充分考虑样本分布的特点,即在构建样本的近邻点集时,近邻点个数取固定值,这可能会将相似度高的点排除在近邻集之外,或者将相似度低的点包括在近邻集... 多标签学习用于处理一个样本同时拥有多个标签的问题。已有的多标签懒惰学习算法IMLLA未充分考虑样本分布的特点,即在构建样本的近邻点集时,近邻点个数取固定值,这可能会将相似度高的点排除在近邻集之外,或者将相似度低的点包括在近邻集内,影响分类方法的性能。针对IMLLA的缺陷,将粒计算的思想加入近邻集的构建,提出一种基于粒计算的多标签懒惰学习算法(GMLLA)。该方法通过粒度控制,确定样本近邻点集,使得近邻集内的样本具有高相似度。实验结果表明,本算法的性能优于IMLLA。 展开更多
关键词 K近邻 多标签学习 懒惰学习 IMLLA 粒计算
下载PDF
基于Spark的压缩近邻算法 被引量:2
4
作者 张素芳 翟俊海 +3 位作者 王婷婷 郝璞 王聪 赵春玲 《计算机科学》 CSCD 北大核心 2018年第B06期406-410,共5页
K-近邻(K-Nearest Neighbors,K-NN)是一种懒惰学习算法,用K-NN对数据分类时,不需要训练分类模型。K-NN算法的优点是思想简单、易于实现;缺点是计算量大,原因是在对测试样例进行分类时,其需要计算测试样例与训练集中每一个训练样例之间... K-近邻(K-Nearest Neighbors,K-NN)是一种懒惰学习算法,用K-NN对数据分类时,不需要训练分类模型。K-NN算法的优点是思想简单、易于实现;缺点是计算量大,原因是在对测试样例进行分类时,其需要计算测试样例与训练集中每一个训练样例之间的距离。压缩近邻算法(Condensed Nearest Neighbors,CNN)可以克服K-NN算法的不足。但是,在面对大数据集时,由于自身的迭代计算特性,CNN的运算效率会变得非常低。针对这一问题,提出一种名为Spark CNN的压缩近邻算法。在大数据环境下,与基于MapReduce的CNN算法相比,Spark CNN的效率大幅提高,在5个大数据集上的实验证明了这一结论。 展开更多
关键词 压缩近邻 大数据 样例选择 迭代计算 懒惰学习
下载PDF
聚类懒惰学习在短期负荷预测中的应用 被引量:1
5
作者 申伟伟 刘牮 《软件导刊》 2018年第8期165-168,173,共5页
负荷预测是电力系统分析与运行的基础,对机组组合、经济调度、安全校核等均具有重要意义。随着电网规模不断增大,数据库时间跨度也随之变大,对不良数据及冗余数据的处理造成影响,负荷预测精度和速度的提高难度显著增大。针对这一问题,... 负荷预测是电力系统分析与运行的基础,对机组组合、经济调度、安全校核等均具有重要意义。随着电网规模不断增大,数据库时间跨度也随之变大,对不良数据及冗余数据的处理造成影响,负荷预测精度和速度的提高难度显著增大。针对这一问题,提出基于懒惰学习与聚类算法的组合模型。该模型以懒惰学习(Lazy Learning,LL)算法为基础,通过选择相似样本对负荷进行差异性预测建模。在预测应用中,为缩小样本库数量,减小LL算法的预测时间,利用模糊C均值聚类(Fuzzy C-means,FCM)对用电特征进行聚类从而生成局部训练集,以改进LL算法局部建模。实验结果表明,FCM-LL组合算法不仅能高效精确地预测负荷,而且能实现数据库的实时更新。 展开更多
关键词 负荷预测 模糊C均值聚类 懒惰学习
下载PDF
L^2DLNB:懒惰学习双层朴素贝叶斯分类器 被引量:1
6
作者 孙江文 王崇骏 +1 位作者 王珺 陈世福 《计算机科学》 CSCD 北大核心 2007年第1期136-139,共4页
尽管朴素贝叶斯简单而且在很多数据集上效果很好,但是其属性独立性假设在现实世界中并不总是成立的,当这一假设不成立时,其结果很差。通过分析和研究,提出了一种放宽这种独立性假设的新算法——懒惰学习双层朴素贝叶斯分类器L2DLNB,该... 尽管朴素贝叶斯简单而且在很多数据集上效果很好,但是其属性独立性假设在现实世界中并不总是成立的,当这一假设不成立时,其结果很差。通过分析和研究,提出了一种放宽这种独立性假设的新算法——懒惰学习双层朴素贝叶斯分类器L2DLNB,该算法使用基于条件互信息的懒惰学习方法,在求不同类标的似然度时,使用不同的属性依赖关系,从而能够更准确地计算出各类标似然度。实验结果表明此算法在一些数据集上取得了更好的分类精度。 展开更多
关键词 朴素贝叶斯 懒惰学习 分类器
下载PDF
基于懒惰学习的显露模式分类
7
作者 田卫东 温勇 《小型微型计算机系统》 CSCD 北大核心 2016年第4期753-757,共5页
现有基于显露模式的分类方法主要通过精简显露模式的数量以构建实用的轻量级分类器,然而对显露模式集的过度精简会损害数据信息的完整性,进而影响分类器性能.本文提出LLEP分类器,采用懒惰学习策略,将分类器的构建推迟到分类阶段进行,以... 现有基于显露模式的分类方法主要通过精简显露模式的数量以构建实用的轻量级分类器,然而对显露模式集的过度精简会损害数据信息的完整性,进而影响分类器性能.本文提出LLEP分类器,采用懒惰学习策略,将分类器的构建推迟到分类阶段进行,以在获知待分类事务信息的基础上,构建出更具针对性的局部分类器;对于显露模式的冗余消除问题,采用了等价类方法来快速划分包含重复信息的显露模式,以保留鲁棒性更优的显露模式参与分类.本文在UCI机器学习库27个数据集上的实验表明,LLEP分类器同11经典种分类器相比,在分类准确度上表现出了良好的性能. 展开更多
关键词 显露模式 等价类 懒惰学习 覆盖率 鲁棒性
下载PDF
融合萤火虫方法的多标签懒惰学习算法 被引量:4
8
作者 程玉胜 钱坤 +1 位作者 王一宾 赵大卫 《计算机应用》 CSCD 北大核心 2019年第5期1305-1311,共7页
已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒... 已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒惰学习算法(FF-MLLA)。首先,利用Minkowski距离来度量样本间相似度,从而找到近邻点;然后,结合标签近邻点和萤火虫方法对标签计数向量进行改进;最后,使用奇异值分解(SVD)与核极限学习机(ELM)进行线性分类。该算法同时考虑了标签信息与相似度信息从而提高了鲁棒性。实验结果表明,所提算法较其他的多标签学习算法有一定优势,并使用统计假设检验与稳定性分析进一步说明所提出算法的合理性与有效性。 展开更多
关键词 多标签学习 萤火虫方法 标签相关性 多标签懒惰学习算法 极限学习
下载PDF
基于类别词语权重的MBL改进方法
9
作者 鲁松 孙红梅 白硕 《模式识别与人工智能》 EI CSCD 北大核心 2001年第1期27-32,共6页
记忆学习方法(Memory-Based Learning(MBL))将存储的训练数据作为获取的知识来使用,并通过相似性比较来完成分类任务,克服了词语一级自然语言处理中知识表示不足给机器学习知识获取带来的障碍。但自然语言的灵活性使MBL方法基于属性逻辑... 记忆学习方法(Memory-Based Learning(MBL))将存储的训练数据作为获取的知识来使用,并通过相似性比较来完成分类任务,克服了词语一级自然语言处理中知识表示不足给机器学习知识获取带来的障碍。但自然语言的灵活性使MBL方法基于属性逻辑(attribute logic)的表示方法面临着较为严重的数据稀疏问题(data sparseproblem),这已经成为MBL方法应用于自然语言处理的主要瓶颈。本文正是针对这一问题,提出一种通过可信距离的判别机制将信息提取领域里文档表示方法的tf.idf词语权重计算引入到MBL中的改进方法。实验证明,我们提出的方法在保持原有训练集规模的情况下使正确率得到了较大的改进。 展开更多
关键词 自然语言处理 词语权重 记忆学习方法 机器学习 懒惰学习
原文传递
一种基于Shapelets的懒惰式时间序列分类算法 被引量:9
10
作者 王志海 张伟 +1 位作者 原继东 刘海洋 《计算机学报》 EI CSCD 北大核心 2019年第1期29-43,共15页
近些年,时间序列分类问题研究受到了越来越多的关注.基于shapelets的时间序列分类技术是一种有效的方法.然而,其在提取最优shapelet的过程中要建立包含大量冗余元素的候选shapelets集合,一般所获得的shapelets只在平均意义上具有某种鉴... 近些年,时间序列分类问题研究受到了越来越多的关注.基于shapelets的时间序列分类技术是一种有效的方法.然而,其在提取最优shapelet的过程中要建立包含大量冗余元素的候选shapelets集合,一般所获得的shapelets只在平均意义上具有某种鉴别性;与此同时,普通模型往往忽略了待分类实例所具有的局部特征.为此,我们提出了一种依据待分类实例显著局部特征的懒惰式分类模型.这种模型为每个待分类实例构建各自的数据驱动的懒惰式shapelets分类模型,从而逐步缩小了与其分类相关的时间序列搜索空间,使得所获得的shapelets能够直接反映待分类实例的显著局部特征.实验结果表明该文提出的模型具有较高的准确率和更强的可解释性. 展开更多
关键词 时间序列 懒惰学习 分类 shapelets 可解释性
下载PDF
基于CPSS平行系统懒惰强化学习算法的实时发电调控 被引量:5
11
作者 殷林飞 陈吕鹏 +1 位作者 余涛 张孝顺 《自动化学报》 EI CSCD 北大核心 2019年第4期706-719,共14页
为解决电力系统中存在的多种时间尺度下经济调度和发电控制的协同问题,即长时间尺度下优化,短时间尺度下优化和实时控制的问题,本文提出了一种统一时间尺度的实时经济发电调度和控制框架,并为该框架提出了懒惰强化学习方法(Lazy reinfor... 为解决电力系统中存在的多种时间尺度下经济调度和发电控制的协同问题,即长时间尺度下优化,短时间尺度下优化和实时控制的问题,本文提出了一种统一时间尺度的实时经济发电调度和控制框架,并为该框架提出了懒惰强化学习方法(Lazy reinforcement learning, LRL).该方法将懒惰控制器引入以人工社会–计算实验–平行执行和社会系统为基础的强化学习中,使得机组组合,经济调度,自动发电控制和发电命令调配的问题有机结合在一起,取代过去传统的发电控制框架.为了减少仿真所需的真实时间,平行系统包含多个虚拟系统和一个真实系统.仿真实验比较了懒惰学习算法,松弛人工网络以及4 608种组合常规发电控制算法在IEEE新英格兰10机39节点仿真系统的控制效果.实验表明,懒惰强化学习方法的控制效果最优.仿真结果验证了懒惰强化学习方法在基于ACP和社会系统的REG框架下具有有效性和可行性. 展开更多
关键词 懒惰强化学习 实时经济调度与控制 统一时间尺度 社会物理信息系统 平行系统
下载PDF
急切式和懒惰式学习策略相结合的决策树分类模型
12
作者 黄泽宇 卢润彩 《北京交通大学学报》 CAS CSCD 北大核心 2005年第5期92-97,共6页
急切式学习策略和懒惰式学习策略有着不同的学习和分类机制.通过分析急切式学习策略下的普通决策树模型和懒惰式学习策略下的懒惰式决策树模型,提出了一种新的决策树分类模型即Semi-LDtree.它生成的决策树的结点,如普通决策树一样,包含... 急切式学习策略和懒惰式学习策略有着不同的学习和分类机制.通过分析急切式学习策略下的普通决策树模型和懒惰式学习策略下的懒惰式决策树模型,提出了一种新的决策树分类模型即Semi-LDtree.它生成的决策树的结点,如普通决策树一样,包含单变量分裂,但是叶子结点相当于一个懒惰式决策树分类器.这种分类模型保留了普通决策树良好的可解释性,实验结果表明它提高了分类速度和分类精确度,特别是在大的数据集合上效果更加明显. 展开更多
关键词 急切式学习策略 懒惰学习策略 懒惰式决策树 朴素贝叶斯
下载PDF
基于K-近邻的局部懒惰式决策树分类模型 被引量:1
13
作者 卢润彩 庞超 时志素 《无线电工程》 2010年第2期57-60,共4页
分类是数据挖掘的一个重要研究课题,其概念是在已有数据的基础上构造出一个分类模型。该模型能够把数据库中的数据记录映射到给定类别中的某一个,从而进行数据的分类。通过对懒惰式学习策略的研究,在大量实验的基础之上,提出了一个新的... 分类是数据挖掘的一个重要研究课题,其概念是在已有数据的基础上构造出一个分类模型。该模型能够把数据库中的数据记录映射到给定类别中的某一个,从而进行数据的分类。通过对懒惰式学习策略的研究,在大量实验的基础之上,提出了一个新的分类模型——Local-LDtree。介绍了Local-LDtree模型的原理和算法,分析了其在分类精确度方面的优劣,指出了对其进行改进的方向。 展开更多
关键词 懒惰学习策略 K-近邻算法 懒惰式决策树 Local-Ldtree
下载PDF
一种基于数据流模式表示的半懒惰式分类算法
14
作者 江晶晶 王志海 原继东 《计算机科学》 CSCD 北大核心 2017年第7期167-174,202,共9页
依据从大规模数据中抽取的模式来建立分类模型是模式挖掘的重要研究问题之一。一种可行的方法是根据模式集合建立贝叶斯分类模型。然而,目前基于模式的贝叶斯分类模型大多是针对静态数据集合的,通常不能适应于高速动态变化与无限的数据... 依据从大规模数据中抽取的模式来建立分类模型是模式挖掘的重要研究问题之一。一种可行的方法是根据模式集合建立贝叶斯分类模型。然而,目前基于模式的贝叶斯分类模型大多是针对静态数据集合的,通常不能适应于高速动态变化与无限的数据流环境。对此,提出一种数据流环境下基于模式发现的贝叶斯分类学习模型,其采用半懒惰式学习策略,针对分类实例在不断更新的频繁项集合上建立局部的分类模型;为加快流数据处理的速度,提出了结构更为简单的混合树结构,同时提出了给定项限制的模式抽取机制以减少候选项集的生成;对数据流中模式抽取不完全的情况,使用平滑技术处理未被抽取的项。大量实验分析证明,相较于其他数据流分类器,所提模型具有更高的分类正确率。 展开更多
关键词 数据流 频繁模式 贝叶斯 懒惰学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部