期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于慢特征分析方法研究陆地表面气温变率的驱动力
1
作者 朱丽飞 孙诚 +3 位作者 李建平 张静 刘雨森 宫湛秋 《大气科学》 CSCD 北大核心 2022年第3期520-540,共21页
慢特征分析(SFA)方法可以从非平稳时间序列中提取出慢变的外强迫信息。近年来,SFA方法被应用于气候变化研究领域,用于探究气候变化的潜在驱动力及相关的动力学机制。本文基于SFA方法,提取全球陆地表面气温(LSAT)的慢变外强迫信息,研究全... 慢特征分析(SFA)方法可以从非平稳时间序列中提取出慢变的外强迫信息。近年来,SFA方法被应用于气候变化研究领域,用于探究气候变化的潜在驱动力及相关的动力学机制。本文基于SFA方法,提取全球陆地表面气温(LSAT)的慢变外强迫信息,研究全球LSAT慢变驱动力的空间结构特征及低频变率的主要驱动因子。SFA方法提取的LSAT慢变驱动力与历史时期全球辐射强迫(GRF)和全球海表温度(SST)的主模态(大西洋多年代际振荡AMO、热带太平洋ENSO变率和太平洋年代际振荡PDO)有显著的相关关系,表明全球大部分地区LSAT的变率受到GRF和三个SST模态的显著影响。GRF对LSAT变率的影响有全球一致性的特征,而三个SST模态对LSAT变率的影响则呈现出明显的区域特点。此外,由于SFA方法可以有效降低原始LSAT序列中随机噪声的干扰,GRF和SST模态对LSAT变率的解释方差显著提高,进一步表明GRF和SST模态是全球LSAT低频变率主要的驱动因子。最后,利用历史海温驱动AGCM试验(即AMIP试验)的结果,验证了三个SST模态对区域LSAT变率的显著影响。 展开更多
关键词 特征分析(sfa) 陆地表面气温 驱动力 低频变率 AMIP试验
下载PDF
基于SFA的改进MFCC特征提取算法 被引量:1
2
作者 张宇 刘坚强 《电声技术》 2015年第5期66-70,共5页
慢特征分析(SFA)算法是一种基于慢度原则、无人监管的高效算法,其核心思想是从复杂多变的混合信号中提取出其中所隐含的缓慢变化成分。声呐接收到的信号,通常都是用Mel频率倒谱系数算法做特征提取,而对于声呐浮标等需要使用无线通信方... 慢特征分析(SFA)算法是一种基于慢度原则、无人监管的高效算法,其核心思想是从复杂多变的混合信号中提取出其中所隐含的缓慢变化成分。声呐接收到的信号,通常都是用Mel频率倒谱系数算法做特征提取,而对于声呐浮标等需要使用无线通信方式传输目标信号的情况,由于信号在传播过程中受信道影响而产生一定的误码率,使得传统的MFCC方法的特征提取性能下降。在传统MFCC的基础上,提出了一种新的算法——基于SFA的改进MFCC特征提取算法。实验数据分析证明,基于SFA的改进MFCC特征性能较传统的基于离散余弦变换(DCT)的MFCC特征性能有明显的提高,从而证实了所提算法的有效性和实用性。 展开更多
关键词 特征提取 特征分析(sfa) 目标识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部