发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场...发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场的多重网格算法具有重要意义。空间离散采用了Roe s FDS格式和Jameson中心有限体积格式,时间推进应用了五步Runge-Kutta方法。采用多重网格V循环方式,对一跨声速悬停旋翼无粘流场进行了数值计算。计算结果表明:多重网格算法可以显著加速悬停旋翼无粘流场的数值计算收敛速度;无论在激波分辨率还是在计算精度上,Roe s FDS格式都优于JST格式。展开更多
文摘发展了一种基于不同空间离散格式的多重网格算法,并应用于悬停旋翼无粘绕流的Euler方程数值模拟。由于悬停旋翼流场中存在不可压区域,同时旋翼尾涡系统的发展需要较长的时间,使得旋翼流场的收敛速度远低于固定翼流场,因此研究旋翼流场的多重网格算法具有重要意义。空间离散采用了Roe s FDS格式和Jameson中心有限体积格式,时间推进应用了五步Runge-Kutta方法。采用多重网格V循环方式,对一跨声速悬停旋翼无粘流场进行了数值计算。计算结果表明:多重网格算法可以显著加速悬停旋翼无粘流场的数值计算收敛速度;无论在激波分辨率还是在计算精度上,Roe s FDS格式都优于JST格式。