期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种抗噪的钢印打码字符识别方法 被引量:1
1
作者 周国华 商俊燕 《计算机与现代化》 2018年第12期106-109,115,共5页
针对总间隔支持向量机对噪声敏感的问题,引入pinball损失函数,提出基于pinball损失函数的总间隔支持向量机。同时提出噪声环境下的钢印打码字符识别方法,首先对钢印图像的字体进行预处理,然后使用基于pinball损失函数的总间隔支持向量... 针对总间隔支持向量机对噪声敏感的问题,引入pinball损失函数,提出基于pinball损失函数的总间隔支持向量机。同时提出噪声环境下的钢印打码字符识别方法,首先对钢印图像的字体进行预处理,然后使用基于pinball损失函数的总间隔支持向量机对图像特征进行分类。实验结果分析表明本文提出的基于pinball损失函数的总间隔支持向量机可以较好地应用于噪声环境下的钢印打码字符识别,在分类效果和ROC曲线指标上具有令人满意的效果。 展开更多
关键词 钢印打码字符识别 间隔支持向量机 pinball损失函数 噪声
下载PDF
总间隔v-支持向量机及其几何问题 被引量:10
2
作者 彭新俊 王翼飞 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期8-16,共9页
提出总间隔v-支持向量机(TM-v-SVM),该算法可取得比v-SVM更好的理论分类性能.研究表明TM-v-SVM等价于求解特征空间中的两个压缩凸包的最近点对.讨论压缩凸包的相关性质,并给出对应的几何算法.数值模拟实验表明TM-v-SVM和对应的几何算法... 提出总间隔v-支持向量机(TM-v-SVM),该算法可取得比v-SVM更好的理论分类性能.研究表明TM-v-SVM等价于求解特征空间中的两个压缩凸包的最近点对.讨论压缩凸包的相关性质,并给出对应的几何算法.数值模拟实验表明TM-v-SVM和对应的几何算法可取得比其它算法更好的性能. 展开更多
关键词 支持向量机(SVM) 间隔支持向量机(TM—SVM) 间隔v-支持向量机(TM-v-SVM) 压缩凸包(CCH) 几何算法
原文传递
基于公共矢量的总间隔v最小类内方差支持向量机在噪音人脸图像分类中的应用
3
作者 杨冰 王士同 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第11期5-11,共7页
为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于... 为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于公共矢量的总间隔v最小类内方差支持向量机(Total margin v minimum class variance support vector machines based on common vectors,TM-v-M(CV)2SVMs)。受公共矢量(commonvectors,CVs)的启发,引入了散度矩阵以进一步提高算法的分类性能和抗噪性能,并给出了TM-v-M(CV)2SVMs的推导过程。经实验证明,在噪音人脸图像的分类问题中,TM-v-M(CV)2SVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能和抗噪性能。 展开更多
关键词 支持向量机 最小类内方差支持向量机 间隔v-支持向量机 判别公共矢量 公共矢量 人脸识别
原文传递
噪音人脸图像的总间隔v最小类内方差SVM分类 被引量:2
4
作者 杨冰 王士同 《计算机工程与应用》 CSCD 北大核心 2010年第30期148-152,共5页
提出总间隔v最小类内方差支持向量机(TM-v-MCVSVMs),用于解决含有噪音人脸图像的分类问题,它综合了最小类内方差支持向量机(MCVSVMs)和总间隔v-支持向量机(TM-v-SVM)的优点。给出了TM-v-MCVSVMs在小样本问题和非线性分类问题中的解决方... 提出总间隔v最小类内方差支持向量机(TM-v-MCVSVMs),用于解决含有噪音人脸图像的分类问题,它综合了最小类内方差支持向量机(MCVSVMs)和总间隔v-支持向量机(TM-v-SVM)的优点。给出了TM-v-MCVSVMs在小样本问题和非线性分类问题中的解决方法。经初步的实验验证,在含有噪音人脸图像的分类问题中,TM-v-MCVSVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能。 展开更多
关键词 支持向量机(SVM) 最小类内方差支持向量机(MCVSVMs) 间隔v-支持向量机(TM-v-SVM) 人脸识别 主成分分析(PCA) 核主成分分析(KPCA)
下载PDF
公共矢量的最小类内方差SVM与噪音人脸分类 被引量:1
5
作者 杨冰 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第27期164-167,202,共5页
提出基于公共矢量的最小类内方差支持向量机(CV-MCVSVM),用于提高噪音人脸图像分类问题中的抗噪性能。它继承了最小类内方差支持向量机(MCVSVMs)的优点,引入了由公共矢量(CVs)构成的散度矩阵Scom,由于CVs包含了样本中的共同信息,因此CV-... 提出基于公共矢量的最小类内方差支持向量机(CV-MCVSVM),用于提高噪音人脸图像分类问题中的抗噪性能。它继承了最小类内方差支持向量机(MCVSVMs)的优点,引入了由公共矢量(CVs)构成的散度矩阵Scom,由于CVs包含了样本中的共同信息,因此CV-MCVSVM在定义中将每个样本减去了CVs的均值,保留了更多的分类信息,进一步提高了抗噪能力。给出了CV-MCVSVM的推导过程。经实验验证,在含有噪音人脸图像的分类问题中,CV-MCVSVM获得了比MCVSVMs和总间隔v-支持向量机(TM-v-SVM)更好的分类性能。 展开更多
关键词 支持向量机(SVM) 最小类内方差支持向量机(MCVSVMs) 间隔v-支持向量机(TM-v-SVM) 判别公共矢量(DCVs) 公共矢量(CVs) 人脸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部