思维链(Chain of thought,CoT)提示使大语言模型能够按照具体推理步骤处理复杂的任务,让大语言模型在常识推理、数学逻辑推理和可解释性等方面表现出更强的能力。然而,CoT方法的主要缺点在于其对庞大语言模型的依赖,这些模型通常拥有数...思维链(Chain of thought,CoT)提示使大语言模型能够按照具体推理步骤处理复杂的任务,让大语言模型在常识推理、数学逻辑推理和可解释性等方面表现出更强的能力。然而,CoT方法的主要缺点在于其对庞大语言模型的依赖,这些模型通常拥有数百亿的参数,在大规模部署方面面临挑战。为此,本文提出一种基于思维链的大模型知识蒸馏方法,主要目标在于充分利用大型语言模型的思维推理能力,通过知识蒸馏技术,引导小模型解决复杂任务。以大型模型为教师模型,小型模型为学生模型,通过获取教师模型的推理数据来微调学生模型。通过更改数据生成方式、基于聚类的问答示例采样、示例启发式纠错以及答案的自适应生成等一系列精心设计的方法,使教师模型的生成过程更高效,生成的推理数据质量更高、数量更多,从而更好地微调学生模型,使其获得强大的推理能力,实现高效的知识蒸馏。这一研究框架旨在建立一个有效的知识传递机制,使得大模型的深度思考能够有效指导小模型,为解决复杂任务提供更为智能且高效的解决方案。通过这种方式,希望能够克服大模型部署的挑战,并促进语言模型在现实世界中的应用和进步。展开更多
文摘思维链(Chain of thought,CoT)提示使大语言模型能够按照具体推理步骤处理复杂的任务,让大语言模型在常识推理、数学逻辑推理和可解释性等方面表现出更强的能力。然而,CoT方法的主要缺点在于其对庞大语言模型的依赖,这些模型通常拥有数百亿的参数,在大规模部署方面面临挑战。为此,本文提出一种基于思维链的大模型知识蒸馏方法,主要目标在于充分利用大型语言模型的思维推理能力,通过知识蒸馏技术,引导小模型解决复杂任务。以大型模型为教师模型,小型模型为学生模型,通过获取教师模型的推理数据来微调学生模型。通过更改数据生成方式、基于聚类的问答示例采样、示例启发式纠错以及答案的自适应生成等一系列精心设计的方法,使教师模型的生成过程更高效,生成的推理数据质量更高、数量更多,从而更好地微调学生模型,使其获得强大的推理能力,实现高效的知识蒸馏。这一研究框架旨在建立一个有效的知识传递机制,使得大模型的深度思考能够有效指导小模型,为解决复杂任务提供更为智能且高效的解决方案。通过这种方式,希望能够克服大模型部署的挑战,并促进语言模型在现实世界中的应用和进步。