期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关键点的点对特征三维目标识别算法 被引量:9
1
作者 陆军 韦攀毅 王伟 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第2期200-207,共8页
针对复杂场景下的三维点云目标识别速度慢,准确率低的问题,提出了一种基于关键点的点对特征三维目标识别算法.通过直接对关键点建立点对特征,避免了周围邻域局部曲面的特征计算,具有空间维度小和计算速度快的特点.使用哈希表存储,加快... 针对复杂场景下的三维点云目标识别速度慢,准确率低的问题,提出了一种基于关键点的点对特征三维目标识别算法.通过直接对关键点建立点对特征,避免了周围邻域局部曲面的特征计算,具有空间维度小和计算速度快的特点.使用哈希表存储,加快了特征匹配的时间.利用快速投票方案对模型点云和场景点云进行匹配识别,生成候选位姿,利用贪婪算法对候选位姿进行聚类与筛选,采用ICP算法对物体位姿进行优化,基于配准后的点云重叠情况完成目标识别.对提出的算法在多个数据集以及真实场景下进行了实验,验证了所提出的识别方法具有可行性和有效性,且对噪声的鲁棒性较强,具有一定的实际工程应用价值. 展开更多
关键词 目标识别 哈希表 快速投票 聚类筛选 位姿优化
下载PDF
基于“快速投票”算法的HMM/SVM混合识别模型及应用 被引量:1
2
作者 罗泽举 朱思铭 《计算机科学》 CSCD 北大核心 2007年第5期215-217,227,共4页
提出一种基于隐马尔可夫模型(HMM)和支持向量机(SVM)的双层过滤识别系统。根据隐马尔可夫模型训练中不同结构的序列其L值分布范围不同的特点,对传统多类“投票模型”进行改进,提出一种“快速投票”算法。先用HMM对人类内含子和外显子进... 提出一种基于隐马尔可夫模型(HMM)和支持向量机(SVM)的双层过滤识别系统。根据隐马尔可夫模型训练中不同结构的序列其L值分布范围不同的特点,对传统多类“投票模型”进行改进,提出一种“快速投票”算法。先用HMM对人类内含子和外显子进行识别,同时,对于L值区域有重叠造成识别率较低的部分,再用支持向量机进行第二次识别过滤。这一模型克服了传统用单一HMM识别方法的不足,实现了HMM和SVM的优势互补。实验表明,用HMM/SVM进行两类识别,其平均识别率达到了90%,进行多类识别,平均识别率达到了91.5%。 展开更多
关键词 HMM/SVM模型 快速投票”方法 内含子和启动子识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部