期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多压电薄膜传感器的睡姿识别方法研究
被引量:
5
1
作者
耿读艳
董嘉冀
+2 位作者
宁琦
赵杰
王晨旭
《现代电子技术》
北大核心
2020年第20期5-8,共4页
睡眠姿势是评估睡眠质量的一个重要因素,对呼吸暂停和心血管疾病有着重要影响。为提高心冲击(BCG)睡姿识别的准确性,提出一种通过多路压电薄膜传感器采集心冲击信号实现睡姿识别的方法。首先设计多压电薄膜传感器组成的软垫来获取BCG信...
睡眠姿势是评估睡眠质量的一个重要因素,对呼吸暂停和心血管疾病有着重要影响。为提高心冲击(BCG)睡姿识别的准确性,提出一种通过多路压电薄膜传感器采集心冲击信号实现睡姿识别的方法。首先设计多压电薄膜传感器组成的软垫来获取BCG信号,然后对预处理后的BCG波形进行时域分析,利用特征比值法优化特征向量,最后输入粒子群优化支持向量机(PSO-SVM)实现仰卧、左侧卧、右侧卧、俯卧4种睡姿的准确识别。结果表明,该文方法与已有睡姿识别方法相比准确率提高到97.1%,克服了单路BCG波形受个体差异及环境的影响,为家庭医疗与无感睡眠监测的研究提供了基础。
展开更多
关键词
睡姿识别
睡眠监测
床垫设计
心
冲击
信号
采集
时域分析
特征向量优化
对比验证
下载PDF
职称材料
题名
基于多压电薄膜传感器的睡姿识别方法研究
被引量:
5
1
作者
耿读艳
董嘉冀
宁琦
赵杰
王晨旭
机构
河北工业大学省部共建电工装备可靠性与智能化国家重点实验室
河北工业大学河北省电磁场与电器可靠性重点实验室
出处
《现代电子技术》
北大核心
2020年第20期5-8,共4页
基金
国家自然科学基金面上项目(51877067)。
文摘
睡眠姿势是评估睡眠质量的一个重要因素,对呼吸暂停和心血管疾病有着重要影响。为提高心冲击(BCG)睡姿识别的准确性,提出一种通过多路压电薄膜传感器采集心冲击信号实现睡姿识别的方法。首先设计多压电薄膜传感器组成的软垫来获取BCG信号,然后对预处理后的BCG波形进行时域分析,利用特征比值法优化特征向量,最后输入粒子群优化支持向量机(PSO-SVM)实现仰卧、左侧卧、右侧卧、俯卧4种睡姿的准确识别。结果表明,该文方法与已有睡姿识别方法相比准确率提高到97.1%,克服了单路BCG波形受个体差异及环境的影响,为家庭医疗与无感睡眠监测的研究提供了基础。
关键词
睡姿识别
睡眠监测
床垫设计
心
冲击
信号
采集
时域分析
特征向量优化
对比验证
Keywords
sleeping posture recognition
sleep monitoring
mattress design
BCG signal collection
time⁃domain analysis
feature vector optimization
comparison validation
分类号
TN304.055-34 [电子电信—物理电子学]
R138 [医药卫生—劳动卫生]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多压电薄膜传感器的睡姿识别方法研究
耿读艳
董嘉冀
宁琦
赵杰
王晨旭
《现代电子技术》
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部