期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的飞行器多余物信号识别 被引量:10
1
作者 孟偲 李阳刚 +1 位作者 张国强 赵长兴 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第3期488-495,共8页
针对飞行器控制电路在生产制造过程中可能引入金属线头等微小多余物,从而留下短路等安全隐患的问题,提出了一种基于微粒碰撞噪声检测(PIND)的飞行器多余物材质识别方法。首先,利用短时自相关函数提取PIND信号的脉冲部分;然后,提取多种... 针对飞行器控制电路在生产制造过程中可能引入金属线头等微小多余物,从而留下短路等安全隐患的问题,提出了一种基于微粒碰撞噪声检测(PIND)的飞行器多余物材质识别方法。首先,利用短时自相关函数提取PIND信号的脉冲部分;然后,提取多种时频域统计特征,并与梅尔频率倒谱系数(MFCC)特征结合起来;最后,训练多分类支持向量机模型实现材质分类。为验证所提方法的有效性,采集了3种不同材质多余物的PIND信号进行模型训练及测试,实验结果表明,所提方法材质识别准确率达98%,优于同类方法的相关结果。 展开更多
关键词 多余物检测 微粒碰撞噪声检测(pind) 机器学习 信号识别 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部