为研究微型冲动式部分进气涡轮机的流场及气动损失特性进而为水下航行器微型涡轮机设计提供参考,建立了2 k W级涡轮机的仿真模型并且通过与公开文献[2]实验结果进行对比验证了所建模型的可靠性,通过改变叶顶间隙、喷管出口与动叶间的轴...为研究微型冲动式部分进气涡轮机的流场及气动损失特性进而为水下航行器微型涡轮机设计提供参考,建立了2 k W级涡轮机的仿真模型并且通过与公开文献[2]实验结果进行对比验证了所建模型的可靠性,通过改变叶顶间隙、喷管出口与动叶间的轴向间隙、喷管扩张角、部分进气度的大小以及轮盘结构,研究了涡轮气动损失。结果表明:微型涡轮具有尺度效应,表现为喷管内声速点移至喉部下游,工作叶片表面的压力变化较为一致;随着上述几何参数的增大,涡轮内效率受叶顶间隙的影响最为明显,而轴向间隙的影响在一定范围内可以忽略,部分进气度为0.35时内效率上升趋于平稳,喷管扩张角为8°时的涡轮内效率高于6°和10°;无叶顶间隙时,除叶片之外的轮盘摩擦损失约为1%。展开更多
文摘为研究微型冲动式部分进气涡轮机的流场及气动损失特性进而为水下航行器微型涡轮机设计提供参考,建立了2 k W级涡轮机的仿真模型并且通过与公开文献[2]实验结果进行对比验证了所建模型的可靠性,通过改变叶顶间隙、喷管出口与动叶间的轴向间隙、喷管扩张角、部分进气度的大小以及轮盘结构,研究了涡轮气动损失。结果表明:微型涡轮具有尺度效应,表现为喷管内声速点移至喉部下游,工作叶片表面的压力变化较为一致;随着上述几何参数的增大,涡轮内效率受叶顶间隙的影响最为明显,而轴向间隙的影响在一定范围内可以忽略,部分进气度为0.35时内效率上升趋于平稳,喷管扩张角为8°时的涡轮内效率高于6°和10°;无叶顶间隙时,除叶片之外的轮盘摩擦损失约为1%。