Hydrogel micropatterns of poly(ethylene glycol) and polyacrylamide were prepared with a facile photolithographic method. Monomer solutions containing photoinitiator were directly polymerized by UV illumination through...Hydrogel micropatterns of poly(ethylene glycol) and polyacrylamide were prepared with a facile photolithographic method. Monomer solutions containing photoinitiator were directly polymerized by UV illumination through a transparency photomask, forming 2-dimensional gel patterns on silanized glass surfaces. The chemically patterned surfaces thus prepared could be used as the template for patterning mammalian cells and formation of structured droplets.展开更多
Poly(ε-caprolactone)(PCL)holds unique bioresorbability and competent biomechanical properties for tissueengineering application.However,PCL is hydrophobic intrinsically and poor in cell-biomaterial interaction.In thi...Poly(ε-caprolactone)(PCL)holds unique bioresorbability and competent biomechanical properties for tissueengineering application.However,PCL is hydrophobic intrinsically and poor in cell-biomaterial interaction.In this study,we prepared a composite based on PCL and bioactive tantalum(Ta)to understand the effects of direct laser micropatterning on composite surface properties.The PCL/Ta composite after preparation was surface-patterned by femtosecond laser and characterized with surface morphology,crystal structure,chemical composition,wettability and cellular response of fibroblast.It was found that laser micropatterning enlarged the difference of wetting properties(~15°)on PCL and PCL/Ta surfaces.The wetting changes was dependent on both material composition and lasermachined geometry.The blending of Ta enhanced surface wettability with prolonged contact time on the laser-machined line and rectangle microarrays.In vitro culture results showed beneficial effects of laser micropatterning on cell morphology of the fibroblasts.On the PCL/Ta surfaces with line and rectangle microarrays,the cells were more likely to bridge the sidewalls of the microgrooves,showing adaptive 3D morphologies to the micro/nano topographies on the sidewalls.These findings are envisaged to facilitate surface design and micropattern optimization for favorable tuning the cell response to biomedical PCL/Ta composites.展开更多
文摘Hydrogel micropatterns of poly(ethylene glycol) and polyacrylamide were prepared with a facile photolithographic method. Monomer solutions containing photoinitiator were directly polymerized by UV illumination through a transparency photomask, forming 2-dimensional gel patterns on silanized glass surfaces. The chemically patterned surfaces thus prepared could be used as the template for patterning mammalian cells and formation of structured droplets.
基金Project(LY19A040001)supported by the Natural Science Foundation of Zhejiang Province,ChinaProjects(12147219,12035006)supported by the National Natural Science Foundation of China+1 种基金Project(531107050927)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(JY-Q/008/2016)supported by the Hunan University for the Yuelu Young Scholars,China。
文摘Poly(ε-caprolactone)(PCL)holds unique bioresorbability and competent biomechanical properties for tissueengineering application.However,PCL is hydrophobic intrinsically and poor in cell-biomaterial interaction.In this study,we prepared a composite based on PCL and bioactive tantalum(Ta)to understand the effects of direct laser micropatterning on composite surface properties.The PCL/Ta composite after preparation was surface-patterned by femtosecond laser and characterized with surface morphology,crystal structure,chemical composition,wettability and cellular response of fibroblast.It was found that laser micropatterning enlarged the difference of wetting properties(~15°)on PCL and PCL/Ta surfaces.The wetting changes was dependent on both material composition and lasermachined geometry.The blending of Ta enhanced surface wettability with prolonged contact time on the laser-machined line and rectangle microarrays.In vitro culture results showed beneficial effects of laser micropatterning on cell morphology of the fibroblasts.On the PCL/Ta surfaces with line and rectangle microarrays,the cells were more likely to bridge the sidewalls of the microgrooves,showing adaptive 3D morphologies to the micro/nano topographies on the sidewalls.These findings are envisaged to facilitate surface design and micropattern optimization for favorable tuning the cell response to biomedical PCL/Ta composites.