Information geometry is a new branch in mathematics, originated from the applications of differential geometry to statistics. In this paper we briefly introduce Riemann-Finsler geometry, by which we establish Informat...Information geometry is a new branch in mathematics, originated from the applications of differential geometry to statistics. In this paper we briefly introduce Riemann-Finsler geometry, by which we establish Information Geometry on a much broader base, so that the potential applications of Information Geometry will be beyond statistics.展开更多
Pure proportional navigation(PPN) is suitable for endoatmospheric interceptions,for its commanded acceleration is perpendicular to interceptor velocity.However,if the target is much faster than the interceptor,the hom...Pure proportional navigation(PPN) is suitable for endoatmospheric interceptions,for its commanded acceleration is perpendicular to interceptor velocity.However,if the target is much faster than the interceptor,the homing performance of PPN will be degraded badly.True proportional navigation(TPN) does not have this problem,but its commanded acceleration is perpendicular to the line of sight(LOS),which is not suitable for endoatmospheric interceptions.The commanded acceleration of differential geometric guidance commands(DGGC) is perpendicular to the interceptor velocity,while the homing performance approximates the LOS referenced guidance laws(PPN series).Therefore,DGGC is suitable for endoatmospheric interception of high-speed targets.However,target maneuver information is essential for the construction of DGGC,and the guidance commands are complex and may be without robustness.Through the deep analysis of three-dimensional engagement,a new construction method of DGGC is proposed in this paper.The target maneuver information is not needed any more,and the robustness of DGGC is guaranteed,which makes the application of DGGC possible.展开更多
文摘Information geometry is a new branch in mathematics, originated from the applications of differential geometry to statistics. In this paper we briefly introduce Riemann-Finsler geometry, by which we establish Information Geometry on a much broader base, so that the potential applications of Information Geometry will be beyond statistics.
文摘Pure proportional navigation(PPN) is suitable for endoatmospheric interceptions,for its commanded acceleration is perpendicular to interceptor velocity.However,if the target is much faster than the interceptor,the homing performance of PPN will be degraded badly.True proportional navigation(TPN) does not have this problem,but its commanded acceleration is perpendicular to the line of sight(LOS),which is not suitable for endoatmospheric interceptions.The commanded acceleration of differential geometric guidance commands(DGGC) is perpendicular to the interceptor velocity,while the homing performance approximates the LOS referenced guidance laws(PPN series).Therefore,DGGC is suitable for endoatmospheric interception of high-speed targets.However,target maneuver information is essential for the construction of DGGC,and the guidance commands are complex and may be without robustness.Through the deep analysis of three-dimensional engagement,a new construction method of DGGC is proposed in this paper.The target maneuver information is not needed any more,and the robustness of DGGC is guaranteed,which makes the application of DGGC possible.