扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数...扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。展开更多
文摘扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。
基金国家自然科学基金项目(50579008)Support of the Foundation for Polish Science through TEAM Programme‘Smart&Safe+3 种基金co-financed by the EU European Regional Development Fundsupport of Structural Funds in the Operational Programme-Innovative Economy(IEOP)financed from the European Regional Development Fund-Projects No POIG.0101.02-00-013/08-00(MONIT)大连民族学院科研基金项目(20116207)大连民族学院自主科研基金项目(DC10040116)