We study the influence of the model parameters on the phase transitions, the equation of state (EOS), and the corresponding mass-radius relations in the interior of neutron stars. The numerical analysis shows that t...We study the influence of the model parameters on the phase transitions, the equation of state (EOS), and the corresponding mass-radius relations in the interior of neutron stars. The numerical analysis shows that the coupling constants of hyperons have a slight influence on the phase transitions and EOS, but an obvious influence on the particle fractions, while the bag constant B and coupling constant g have an important influence on the phase transitions, the EOS, and the mass-radius relations. We find that both the bag constant B and coupling constant g play the same role in the description of the interactions between quarks of hybrid stars. The maximum mass calculated by using the bag constant determined with experimental data (ranging from 175 to 200 MeV) falls in the interval of 1.4 ~1.7 solar mass. The corresponding radius is between 9.3 and 12 km. These results are in agreement with observed values of neutron stars. The possibility of the existence of a third family is discussed. The detection of a third family may provide a signature for a phase transition inside neutron stars.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10047001 and 10275029, the State Key Basic Reserch Development Program under Grant No, G2000-0774-07, and the CAS Knowledge Innovation Project under Grant No. KJCX2-N11
文摘We study the influence of the model parameters on the phase transitions, the equation of state (EOS), and the corresponding mass-radius relations in the interior of neutron stars. The numerical analysis shows that the coupling constants of hyperons have a slight influence on the phase transitions and EOS, but an obvious influence on the particle fractions, while the bag constant B and coupling constant g have an important influence on the phase transitions, the EOS, and the mass-radius relations. We find that both the bag constant B and coupling constant g play the same role in the description of the interactions between quarks of hybrid stars. The maximum mass calculated by using the bag constant determined with experimental data (ranging from 175 to 200 MeV) falls in the interval of 1.4 ~1.7 solar mass. The corresponding radius is between 9.3 and 12 km. These results are in agreement with observed values of neutron stars. The possibility of the existence of a third family is discussed. The detection of a third family may provide a signature for a phase transition inside neutron stars.