期刊文献+
共找到372篇文章
< 1 2 19 >
每页显示 20 50 100
情感分类研究进展 被引量:88
1
作者 陈龙 管子玉 +1 位作者 何金红 彭进业 《计算机研究与发展》 EI CSCD 北大核心 2017年第6期1150-1170,共21页
文本情感分析是多媒体智能理解的重要问题之一.情感分类是情感分析领域的核心问题,旨在解决评论情感极性的自动判断问题.由于互联网评论数据规模与日俱增,传统基于词典的方法和基于机器学习的方法已经不能很好地处理海量评论的情感分类... 文本情感分析是多媒体智能理解的重要问题之一.情感分类是情感分析领域的核心问题,旨在解决评论情感极性的自动判断问题.由于互联网评论数据规模与日俱增,传统基于词典的方法和基于机器学习的方法已经不能很好地处理海量评论的情感分类问题.随着近年来深度学习技术的快速发展,其在大规模文本数据的智能理解上表现出了独特的优势,越来越多的研究人员青睐于使用深度学习技术来解决文本分类问题.主要分为2个部分:1)归纳总结传统情感分类技术,包括基于字典的方法、基于机器学习的方法、两者混合方法、基于弱标注信息的方法以及基于深度学习的方法;2)针对前人情感分类方法的不足,详细介绍所提出的面向情感分类问题的弱监督深度学习框架.此外,还介绍了评论主题提取相关的经典工作.最后,总结了情感分类问题的难点和挑战,并对未来的研究工作进行了展望. 展开更多
关键词 情感分析 情感分类 深度学习 监督 主题提取
下载PDF
目标检测难点问题最新研究进展综述 被引量:15
2
作者 罗会兰 彭珊 陈鸿坤 《计算机工程与应用》 CSCD 北大核心 2021年第5期36-46,共11页
目标检测是计算机视觉领域最基本的问题之一,已经被广泛地探讨和研究。虽然近年来基于深度卷积神经网络的目标检测方法使得检测精度有了很大提升,但是在实际应用中仍然存在较多挑战。综述了目标检测领域的最新研究趋势,针对不同的目标... 目标检测是计算机视觉领域最基本的问题之一,已经被广泛地探讨和研究。虽然近年来基于深度卷积神经网络的目标检测方法使得检测精度有了很大提升,但是在实际应用中仍然存在较多挑战。综述了目标检测领域的最新研究趋势,针对不同的目标检测挑战和难题:目标尺度变化范围大、实时检测问题、弱监督检测问题和样本不均衡问题,从四个方面综述了最近的目标检测研究方法,分析了不同算法之间的关系,阐述了新的改进方法、检测过程和实现效果,并详细比较了不同算法的检测精度、优缺点和适用场景。最后讨论了未来有可能进一步发展的几个方向。 展开更多
关键词 目标检测 卷积神经网络 多尺度 实时检测 监督 样本不均衡
下载PDF
一种语义弱监督LDA的商品评论细粒度情感分析算法 被引量:13
3
作者 彭云 万红新 钟林辉 《小型微型计算机系统》 CSCD 北大核心 2018年第5期978-985,共8页
随着商品评论文本数据的日益增加,需要利用情感分析技术来自动实现商品的情感极性分类,尤其是细粒度的情感分类.LDA主题模型可以实现大规模文本数据的主题词提取,并利用主题聚类功能发现特征词和情感词之间的潜在关系,但LDA模型倾向于... 随着商品评论文本数据的日益增加,需要利用情感分析技术来自动实现商品的情感极性分类,尤其是细粒度的情感分类.LDA主题模型可以实现大规模文本数据的主题词提取,并利用主题聚类功能发现特征词和情感词之间的潜在关系,但LDA模型倾向于提取粗粒度的情感分类知识,难以满足细粒度情感分析的语义需求.本文提出了一种语义弱监督的主题模型,在LDA模型中嵌入词语关联、全局特征词及主题情感隶属语义先验知识来提升LDA对特征词、情感词及其关系的识别能力.主要研究内容包括:从句法分析、词性关系和语境相关等角度进行词语关联语义约束的提取;全局特征词识别和主题情感隶属两类语义约束的获取;设计语义约束对LDA主题分配的影响机制,构建语义弱监督的细粒度情感分析主题模型SWS-LDA.实验表明,SWS-LDA模型可以改善LDA的语义理解能力,提高局部特征词和局部情感词的提取率,提升主题模型细粒度情感极性分类的准确性. 展开更多
关键词 商品评论 主题模型 LDA 情感分析 监督
下载PDF
基于卷积神经网络的中文医疗弱监督关系抽取 被引量:12
4
作者 刘凯 符海东 +1 位作者 邹玉薇 顾进广 《计算机科学》 CSCD 北大核心 2017年第10期249-253,共5页
随着医疗领域受到越来越多的关注,自然语言处理的理论和应用逐渐拓展到该领域,其中信息抽取技术在该领域的应用成为研究热点。针对信息抽取技术在医疗领域实体关系抽取中的应用,提出一种基于卷积神经网络的弱监督关系抽取方法。该方法... 随着医疗领域受到越来越多的关注,自然语言处理的理论和应用逐渐拓展到该领域,其中信息抽取技术在该领域的应用成为研究热点。针对信息抽取技术在医疗领域实体关系抽取中的应用,提出一种基于卷积神经网络的弱监督关系抽取方法。该方法通过添加人工规则使训练语料带有实体关系标签,然后将该弱关系训练语料转换为向量特征矩阵,并输入到卷积神经网络进行分类模型训练,最终实现实体关系抽取。实验结果表明,该方法比常规机器学习方法更加准确高效。 展开更多
关键词 自然语言处理 实体关系抽取 监督 卷积神经网络
下载PDF
基于机器学习的实体关系抽取方法 被引量:10
5
作者 刘方驰 钟志农 +1 位作者 雷霖 吴烨 《兵工自动化》 2013年第9期57-62,共6页
实体关系抽取是信息抽取的一项重要内容,总结现有的方法对于该领域的发展具有指导和借鉴意义。结合当前的研究进展,分析和比较了有监督、无监督和弱监督3类关系抽取方法的原理和代表性算法,总结了各类方法的特性并对关系抽取的发展趋势... 实体关系抽取是信息抽取的一项重要内容,总结现有的方法对于该领域的发展具有指导和借鉴意义。结合当前的研究进展,分析和比较了有监督、无监督和弱监督3类关系抽取方法的原理和代表性算法,总结了各类方法的特性并对关系抽取的发展趋势进行了展望。 展开更多
关键词 实体关系抽取 机器学习 监督 监督 监督
下载PDF
基于弱监督的属性关系抽取方法 被引量:10
6
作者 杨宇飞 戴齐 +1 位作者 贾真 尹红风 《计算机应用》 CSCD 北大核心 2014年第1期64-68,共5页
针对从中文百科中抽取属性关系时所面临的训练语料匮乏问题,提出一种利用极少人工参与的弱监督自动抽取方法。首先,利用中文百科条目信息模板中的半结构化属性关系回标条目文本自动获取训练语料;然后,根据朴素贝叶斯分类原理优化训练语... 针对从中文百科中抽取属性关系时所面临的训练语料匮乏问题,提出一种利用极少人工参与的弱监督自动抽取方法。首先,利用中文百科条目信息模板中的半结构化属性关系回标条目文本自动获取训练语料;然后,根据朴素贝叶斯分类原理优化训练语料;最后,基于条件随机场(CRF)建立属性关系抽取模型。在互动百科中采集的数据集上进行实验,综合评价F值达到了80.9%。结果表明该方法能够获得质量较高的训练语料,并取得良好的抽取性能。 展开更多
关键词 关系抽取 监督 中文百科 朴素贝叶斯分类 条件随机场
下载PDF
基于弱监督预训练CNN模型的情感分析方法 被引量:9
7
作者 张越 夏鸿斌 《计算机工程与应用》 CSCD 北大核心 2018年第13期27-33,共7页
传统的情感分析研究大多基于机器学习算法,此类方法依赖大量人工抽取的特征与领域知识。使用卷积神经网络自动学习文本的特征表示,进而判别文本的情感极性。为了解决情感分析中监督训练样本不足的问题,利用大规模弱监督数据来训练卷积... 传统的情感分析研究大多基于机器学习算法,此类方法依赖大量人工抽取的特征与领域知识。使用卷积神经网络自动学习文本的特征表示,进而判别文本的情感极性。为了解决情感分析中监督训练样本不足的问题,利用大规模弱监督数据来训练卷积神经网络。同时引入"预训练-微调"策略,先在弱监督数据集上对卷积神经网络进行预训练,然后使用监督数据集进行微调训练来克服弱监督数据中的噪声问题。在SemEval-2013 Twitter情感分析数据集上进行实验验证,结果表明由于引入了弱监督数据参与训练,有效增强了卷积神经网络学习情感语义的能力,从而提升了模型的准确性。 展开更多
关键词 情感分析 监督 预训练-微调 卷积神经网络
下载PDF
有限标注数据的人群计数综述
8
作者 杨莎 邹豪杰 +1 位作者 李伟 张历卓 《长江信息通信》 2024年第6期180-183,共4页
人群计数旨在从图像或视频帧中估计人群数量,在公共安全管理、视频监控、行为分析等不同的应用中具有着重大意义。近年来,研究人员更加关注如何使用更少的数据标注去获取近似的计数性能,因为全监督人群计数方法需要大量的点级标注来监... 人群计数旨在从图像或视频帧中估计人群数量,在公共安全管理、视频监控、行为分析等不同的应用中具有着重大意义。近年来,研究人员更加关注如何使用更少的数据标注去获取近似的计数性能,因为全监督人群计数方法需要大量的点级标注来监督网络的训练过程,尽管这类方法克服了多重困难并在各个方面上取得了很大成功,但是这种训练设置极其昂贵且耗时。因此,该文对有限标注数据的人群计数领域进行系统而全面地回顾,对基于自监督、弱监督和半监督的人群计数方法进行细致地分析和探讨。此外,我们还介绍了公开数据集。最后,我们总结并展望了这一领域可能的未来方向。 展开更多
关键词 人群计数 监督 监督 监督
下载PDF
基于对象位置线索的弱监督图像语义分割方法 被引量:7
9
作者 李阳 刘扬 +1 位作者 刘国军 郭茂祖 《软件学报》 EI CSCD 北大核心 2020年第11期3640-3656,共17页
深度卷积神经网络使用像素级标注,在图像语义分割任务中取得了优异的分割性能.然而,获取像素级标注是一项耗时并且代价高的工作.为了解决这个问题,提出一种基于图像级标注的弱监督图像语义分割方法.该方法致力于使用图像级标注获取有效... 深度卷积神经网络使用像素级标注,在图像语义分割任务中取得了优异的分割性能.然而,获取像素级标注是一项耗时并且代价高的工作.为了解决这个问题,提出一种基于图像级标注的弱监督图像语义分割方法.该方法致力于使用图像级标注获取有效的伪像素标注来优化分割网络的参数.该方法分为3个步骤:(1)首先,基于分类与分割共享的网络结构,通过空间类别得分(图像二维空间上像素点的类别得分)对网络特征层求导,获取具有类别信息的注意力图;(2)采用逐次擦除法产生显著图,用于补充注意力图中缺失的对象位置信息;(3)融合注意力图与显著图来生成伪像素标注并训练分割网络.在PASCALVOC2012分割数据集上的一系列对比实验,证明了该方法的有效性及其优秀的分割性能. 展开更多
关键词 图像语义分割 监督 深度卷积神经网络 注意力图 显著图
下载PDF
基于多分支神经网络模型的弱监督细粒度图像分类方法 被引量:7
10
作者 边小勇 江沛龄 +2 位作者 赵敏 丁胜 张晓龙 《计算机应用》 CSCD 北大核心 2020年第5期1295-1300,共6页
针对传统基于注意力机制的神经网络不能联合关注局部特征和旋转不变特征的问题,提出一种基于多分支神经网络模型的弱监督细粒度图像分类方法。首先,用轻量级类激活图(CAM)网络定位有潜在语义信息的局部区域,设计可变形卷积的残差网络Res... 针对传统基于注意力机制的神经网络不能联合关注局部特征和旋转不变特征的问题,提出一种基于多分支神经网络模型的弱监督细粒度图像分类方法。首先,用轻量级类激活图(CAM)网络定位有潜在语义信息的局部区域,设计可变形卷积的残差网络ResNet-50和旋转不变编码的方向响应网络(ORN);其次,利用预训练模型分别初始化特征网络,并输入原图和以上局部区域分别对模型进行微调;最后,组合三个分支内损失和分支间损失优化整个网络,对测试集进行分类预测。所提方法在CUB-200-2011和FGVC_Aircraft数据集上的分类准确率分别达到87.7%和90.8%,与多注意力卷积神经网络(MA-CNN)方法相比,分别提高了1.2个百分点和0.9个百分点;在Aircraft_2数据集上的分类准确率达到91.8%,比ResNet-50网络提高了4.1个百分点。实验结果表明,所提方法有效提高了弱监督细粒度图像分类的准确率。 展开更多
关键词 细粒度图像分类 深度学习 监督 可变形卷积 类激活图 方向响应网络
下载PDF
单通道语音增强中深度学习方法研究现状与展望 被引量:6
11
作者 张雄伟 李毅豪 +1 位作者 孙蒙 张强 《陆军工程大学学报》 2022年第5期1-12,共12页
语音增强是语音信号处理领域一种传统且依然非常活跃的研究分支。单通道语音增强是指从单个麦克风采集的带噪语音中尽可能恢复出干净语音,在移动通信、语音交互、数字助听等领域有重要的应用价值。传统的单通道语音增强技术在处理平稳... 语音增强是语音信号处理领域一种传统且依然非常活跃的研究分支。单通道语音增强是指从单个麦克风采集的带噪语音中尽可能恢复出干净语音,在移动通信、语音交互、数字助听等领域有重要的应用价值。传统的单通道语音增强技术在处理平稳噪声时已取得较好的增强性能,但在非平稳噪声条件下增强效果依然难以令人满意。近年来,随着人工智能的快速发展,基于深度学习的单通道语音增强在处理非平稳噪声问题方面已取得明显的进展。通过系统梳理单通道语音增强中深度学习方法的发展,并按照技术发展脉络,分基于参数映射、基于生成对抗机制和基于弱监督3个方面进行综述,介绍三类方法的基本原理,分析典型文献的技术思路,总结三类方法的优势与存在的问题,最后对深度学习技术在单通道语音增强领域的发展进行了展望。 展开更多
关键词 单通道语音增强 深度学习 参数映射 生成对抗网络 监督
下载PDF
基于Xception网络的弱监督细粒度图像分类 被引量:6
12
作者 丁文谦 余鹏飞 +1 位作者 李海燕 陆鑫伟 《计算机工程与应用》 CSCD 北大核心 2022年第2期235-243,共9页
随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weak... 随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱监督数据增强的方法相结合的深度学习网络应用于细粒度图像分类任务。该方法以Xception网络作为骨干网络和特征提取网络、利用改进的WSDAN模型进行数据增强,并把增强后的图像反馈回网络作为输入图像来增强网络的泛化能力。在常用的细粒度图像数据集和NABirds数据集上进行实验验证,得到的分类正确率分别为89.28%、91.18%、94.47%、93.04%和88.4%。实验结果表明,与WSDAN(Pytorch)模型及其他多个主流细粒度分类算法相比,该方法取得了更好的分类结果。 展开更多
关键词 细粒度图像分类 数据增强 深度学习 监督 Xception网络
下载PDF
无监督和弱监督视频异常检测方法回顾与前瞻
13
作者 张琳 陈兆波 +1 位作者 马晓轩 张凡博 《科学技术与工程》 北大核心 2024年第19期7941-7955,共15页
随着监控技术的不断发展,监控摄像头已经被广泛部署到各种场景中。手动检测视频异常情况已经变得不可能。因此,作为智能监控系统核心的视频异常检测技术正在受到广泛关注和研究。随着深度学习的发展,视频异常检测领域取得了显著的成就,... 随着监控技术的不断发展,监控摄像头已经被广泛部署到各种场景中。手动检测视频异常情况已经变得不可能。因此,作为智能监控系统核心的视频异常检测技术正在受到广泛关注和研究。随着深度学习的发展,视频异常检测领域取得了显著的成就,并涌现出许多新的异常检测方法。梳理了应用在不同数据类型上的无监督和弱监督视频异常检测学习方法,分析现有方法的贡献,并比较不同模型的性能。此外,还整理了一些常用的和新发布的数据集,并总结了未来工作要面临的挑战和发展趋势。 展开更多
关键词 视频异常检测 监督 监督 数据集 视频监控
下载PDF
基于全局上下文网络的视频异常行为检测方法
14
作者 朱艺璇 易淑涵 +1 位作者 刘睿涵 范哲意 《中国电子科学研究院学报》 2024年第2期162-171,共10页
文中针对视频信息中的长距离时间特征关系易被忽略的问题,提出了一种基于全局上下文网络的弱监督视频异常行为检测方法。为了提升对视觉场景的全局理解,提高异常检测的准确性,对时间特征提取模块进行改进,仅计算一个与查询位置无关的全... 文中针对视频信息中的长距离时间特征关系易被忽略的问题,提出了一种基于全局上下文网络的弱监督视频异常行为检测方法。为了提升对视觉场景的全局理解,提高异常检测的准确性,对时间特征提取模块进行改进,仅计算一个与查询位置无关的全局注意力矩阵,并对所有查询位置共享,有效降低网络计算量和参数量。同时进行网络模块优化,加快运算速度。实验结果表明,基于全局上下文网络的视频异常行为检测算法能够在网络更具轻便性、运算效率更高的情况下有效提高异常检测准确率。 展开更多
关键词 视频异常行为检测 监督 时间特征 全局注意力矩阵
下载PDF
在线深度神经网络的弱监督概念漂移检测方法
15
作者 马乾骏 郭虎升 王文剑 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2094-2101,共8页
流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的... 流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能. 展开更多
关键词 流数据 概念漂移 监督 深度神经网络 蒙特卡罗方法 预测不确定性
下载PDF
一类弱监督数据中多视角扰动的特征选择方法
16
作者 郭启航 王平心 +2 位作者 杜亮 杨习贝 钱宇华 《江苏科技大学学报(自然科学版)》 CAS 2024年第2期101-108,共8页
弱标签消歧技术可以用来消除数据中的噪声标签.然而,经由弱标签消歧后的数据中依然可能存在冗余或不相关特征,因此带来了弱监督数据中的特征选择这一实际问题.在弱标签消歧后得到的数据的基础上,提出了一种基于多视角扰动的特征选择框架... 弱标签消歧技术可以用来消除数据中的噪声标签.然而,经由弱标签消歧后的数据中依然可能存在冗余或不相关特征,因此带来了弱监督数据中的特征选择这一实际问题.在弱标签消歧后得到的数据的基础上,提出了一种基于多视角扰动的特征选择框架,其能够分别从样本和特征多个视角出发,构造不同的扰动数据,以便求解出多个不同的特征选择结果,从而为后续的学习任务提供基础性集成工具.此外,所提的多视角扰动特征选择框架适用于不同类型、不同约束下的搜索进程.在12组高维数据上,通过注入5种不同比例的标签噪声和使用3种不同类型的特征度量准则,实验结果表明,所提方法求得的特征选择结果能够从准确率和稳定性的层面极大地提升分类性能. 展开更多
关键词 特征选择 多视角 粗糙集 超集学习 监督
下载PDF
特色农产品销售评价大数据的弱监督分析方法
17
作者 易文龙 张丽 +1 位作者 刘木华 程香平 《农业工程学报》 EI CAS CSCD 北大核心 2024年第12期183-192,共10页
针对特色农产品评价大数据多维度分析中,可信标签不足以及挖掘消费者各维度真实情感语义困难等问题。该研究提出了一种基于弱监督训练的深度学习方法。首先,通过主题模型分析大规模评论,提取产品评价主题和关键词。然后,结合句法依存和... 针对特色农产品评价大数据多维度分析中,可信标签不足以及挖掘消费者各维度真实情感语义困难等问题。该研究提出了一种基于弱监督训练的深度学习方法。首先,通过主题模型分析大规模评论,提取产品评价主题和关键词。然后,结合句法依存和情感词典为评论生成不同维度的伪标签。最后,构建多标签多分类深度网络,在伪标签上进行弱监督学习。结果表明,该方法在红心柚评论数据集上取得89.2%的准确率和80.3%的F1值,比随机森林算法提升了7.1个百分点的准确率和11.5个百分点的F1值。相比Transformer模型,准确率提高5.6个百分点,F1值提高2.0个百分点,参数量减少了92%。该方法能从海量评论中高效提取产品评价维度和消费者关注点,为完善农产品质量和销售服务提供数据支持。 展开更多
关键词 农产品 监督 多任务模型 情感分析 深度学习 大数据分析
下载PDF
基于改进EfficientNet的细粒度图像识别
18
作者 许成君 《舰船电子工程》 2024年第5期116-119,共4页
普通CNN模型直接应用于细粒度图像识别时关键特征提取不充分,导致模型细粒度识别准确率较低,针对这个问题,论文提出了一种基于改进EfficientNet的细粒度图像识别算法,以EffcientNetB3为主干,在全局平均池化层(GAP Layer)之前添加一个CBA... 普通CNN模型直接应用于细粒度图像识别时关键特征提取不充分,导致模型细粒度识别准确率较低,针对这个问题,论文提出了一种基于改进EfficientNet的细粒度图像识别算法,以EffcientNetB3为主干,在全局平均池化层(GAP Layer)之前添加一个CBAM注意力模块,提升模型关键特征提取能力。论文利用迁移学习训练得到细粒度识别网络,实验结果表明,训练得到的改进模型在CUB-200-2011数据集上的识别准确率达到了84.5%左右,相比于原网络准确率提升了5.4%,另外与常用CNN模型相比模型复杂度更低,识别准确度更好。 展开更多
关键词 EffcientNetB3 监督 CBAM注意力模块 细粒度图像识别
下载PDF
面向弱监督小样本的边缘网络安全防护方法研究
19
作者 朱京毅 周斌 徐诚俊 《移动通信》 2024年第8期123-128,共6页
边缘计算模式下网络攻击手段复杂化和自动化对网络防护提出了更高的挑战,提出一种弱监督小样本的网络安全防护方法。首先,该方法利用EfficientNet-B0方法得到多尺度、细粒度的真实告警事件特征集;然后,引入域随机化方法生成大量虚拟告... 边缘计算模式下网络攻击手段复杂化和自动化对网络防护提出了更高的挑战,提出一种弱监督小样本的网络安全防护方法。首先,该方法利用EfficientNet-B0方法得到多尺度、细粒度的真实告警事件特征集;然后,引入域随机化方法生成大量虚拟告警事件语义特征并采用组合方式合成大量的虚拟告警事件语义特征集,在此基础上,采用余弦相似性来筛选满足条件的虚拟告警事件语义特征集从而解决传统入侵检测方法所需要大量训练样本的难题;最后,采用增量式学习的方法来校正模型参数以解决传统入侵检测模型不适用于动态多变未知攻击场景的安全防护问题。实验表明,面对未知攻击场景,所提出的安全防护方法相较于传统方法具有更强的泛化能力,具有一定的扩展性。 展开更多
关键词 监督 小样本 增强学习 安全防护
下载PDF
基于深度学习的视频异常检测研究综述 被引量:2
20
作者 龚益玲 张鑫昕 陈松 《数据通信》 2023年第3期45-49,共5页
视频是所有数据类型中承载信息最丰富的载体,研究监控视频对社会公共安全有着积极的推动作用。异常检测旨在判定异常事件在监控视频序列中具体出现的时间位置,能够有效缓解监控分析压力,近年来已成为深度学习的一个研究热点。本文首先... 视频是所有数据类型中承载信息最丰富的载体,研究监控视频对社会公共安全有着积极的推动作用。异常检测旨在判定异常事件在监控视频序列中具体出现的时间位置,能够有效缓解监控分析压力,近年来已成为深度学习的一个研究热点。本文首先介绍了基于深度学习的视频异常检测研究背景,然后从数据驱动的角度出发,将近年来的基于深度学习的视频异常检测模型成果进行了分类总结,尤其是对半监督和弱监督问题设置下的深度异常检测模型进行了详细概述。此外,本文还介绍了5个视频异常检测的常用基准数据集,分别从内容规模、标注情况和总体效用3个角度分析数据集特性,最后对当前基于深度学习的视频异常检测领域的研究成果和面临的挑战进行了思考和探讨。 展开更多
关键词 视频异常检测 深度学习 监督 数据集
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部