在1600 mm×1400 mm的矩形塔内以水为物系,对直径9 m DJ塔板弓形区部分区域上的液相流场特性进行了实验研究,并通过计算流体力学(CFD)模拟进行了理论分析,着重研究了在不同溢流强度下导流板和受液区的设置对弓形区流场分布的影响。...在1600 mm×1400 mm的矩形塔内以水为物系,对直径9 m DJ塔板弓形区部分区域上的液相流场特性进行了实验研究,并通过计算流体力学(CFD)模拟进行了理论分析,着重研究了在不同溢流强度下导流板和受液区的设置对弓形区流场分布的影响。实验结果表明,液体流量增加,液相流场分布趋于均匀。安装于受液区与液流交会处的导流板均促进了板上流场的均匀分布,其中液流交会处的导流板能够破坏漩涡区。在弓形区内,设置3个受液区比设置5个受液区的液相流场分布更均匀。此外,通过CFD软件模拟计算分析,端部与其他部分受液区分配的流量适宜比例为1∶3,该流量比例下弓形区内流场分布情况较好。弓形区结构优化后的DJ塔板已经成功应用于实际工业装置。展开更多
文摘在1600 mm×1400 mm的矩形塔内以水为物系,对直径9 m DJ塔板弓形区部分区域上的液相流场特性进行了实验研究,并通过计算流体力学(CFD)模拟进行了理论分析,着重研究了在不同溢流强度下导流板和受液区的设置对弓形区流场分布的影响。实验结果表明,液体流量增加,液相流场分布趋于均匀。安装于受液区与液流交会处的导流板均促进了板上流场的均匀分布,其中液流交会处的导流板能够破坏漩涡区。在弓形区内,设置3个受液区比设置5个受液区的液相流场分布更均匀。此外,通过CFD软件模拟计算分析,端部与其他部分受液区分配的流量适宜比例为1∶3,该流量比例下弓形区内流场分布情况较好。弓形区结构优化后的DJ塔板已经成功应用于实际工业装置。