期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Opt-MobileNetV3的大豆种子异常籽粒识别研究
1
作者 陈思羽 朱红媛 +3 位作者 王俊发 于添 王贞旭 刘春山 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期359-365,共7页
针对大豆异常籽粒识别模型参数量过大、计算成本高、准确率较低等问题,提出了一种改进的轻量级神经网络MobileNetV3模型,将其层数减少,加快模型的训练和推理速度,增加全连接层和Softmax层以增加模型的非线性判别能力以及利于多分类任务... 针对大豆异常籽粒识别模型参数量过大、计算成本高、准确率较低等问题,提出了一种改进的轻量级神经网络MobileNetV3模型,将其层数减少,加快模型的训练和推理速度,增加全连接层和Softmax层以增加模型的非线性判别能力以及利于多分类任务的输出,使用全局平均池化代替全局最大池化减少信息丢失,通过添加Dropout层以及去掉MobileNetV3中SE Block注意力机制来增加模型的泛化能力。试验结果表明:将大豆籽粒图像数据经过传统的卷积神经网络AlexNet、VGG16与轻量级神经网络MobilenetV3训练测试结果进行对比,AlexNet算法最终平均精度均值(Mean average precision,mAP)为87.3%、VGG16算法为87.7%,二者mAP相差较小,但两者在训练过程中模型内存占用量及训练时间相差较大,其中AlexNet模型内存占用量为7070 kB,训练时间为5420.59 s,而VGG16模型内存占用量为19674 kB,训练时间为8282.68 s,整体来看AlexNet相对更好。通过对轻量级神经网络MobileNetV3模型的识别训练,最终模型内存占用量为32153 kB,训练时间为6298.29 s,mAP达到90.6%,相比两个传统算法更高,更适合大豆异常籽粒的分类识别。为了提高训练精度及速度,通过对MobileNetV3网络模型结构调整改进,最终优化改进后的Opt-MobileNetV3网络模型mAP达到95.7%,相较传统MobileNetV3神经网络mAP提高5.1个百分点,模型内存占用量为9317 kB,减小22836 kB,同时训练时间节省696.57 s。优化后的模型实现了模型减小、准确率提高、训练速度加快,可完成大豆异常籽粒识别任务。 展开更多
关键词 大豆种子 异常籽粒 MobileNetV3 籽粒识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部