期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种大规模支持向量机的高效求解算法
被引量:
1
1
作者
冯昌
李子达
廖士中
《计算机科学》
CSCD
北大核心
2015年第9期195-198,共4页
现有大规模支持向量机求解算法需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出了一种大规模支持向量机(SVM)的高效求解算法,以在个人PC机求解大规模SVM。它包括3个步骤:首先对大规模样本进行子采样来降低数据规模...
现有大规模支持向量机求解算法需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出了一种大规模支持向量机(SVM)的高效求解算法,以在个人PC机求解大规模SVM。它包括3个步骤:首先对大规模样本进行子采样来降低数据规模;然后应用随机傅里叶映射显式地构造随机特征空间,使得可在该随机特征空间中应用线性SVM来一致逼近高斯核SVM;最后给出线性SVM在多核环境下的并行实现方法以进一步提高求解效率。标准数据集的对比实验验证了该求解算法的可行性与高效性。
展开更多
关键词
大规模
支持向量机
子采样
随
机
傅里叶特征
并行
线性
支持向量机
下载PDF
职称材料
题名
一种大规模支持向量机的高效求解算法
被引量:
1
1
作者
冯昌
李子达
廖士中
机构
天津大学计算机科学与技术学院
出处
《计算机科学》
CSCD
北大核心
2015年第9期195-198,共4页
基金
国家自然科学基金(61170019)资助
文摘
现有大规模支持向量机求解算法需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出了一种大规模支持向量机(SVM)的高效求解算法,以在个人PC机求解大规模SVM。它包括3个步骤:首先对大规模样本进行子采样来降低数据规模;然后应用随机傅里叶映射显式地构造随机特征空间,使得可在该随机特征空间中应用线性SVM来一致逼近高斯核SVM;最后给出线性SVM在多核环境下的并行实现方法以进一步提高求解效率。标准数据集的对比实验验证了该求解算法的可行性与高效性。
关键词
大规模
支持向量机
子采样
随
机
傅里叶特征
并行
线性
支持向量机
Keywords
Large-scale support vector machine, Subsampling, Random Fourier features, Parallelized linear SVM
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种大规模支持向量机的高效求解算法
冯昌
李子达
廖士中
《计算机科学》
CSCD
北大核心
2015
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部