期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
自适应上下文特征的多尺度目标检测算法 被引量:5
1
作者 王凤随 陈金刚 +1 位作者 王启胜 刘芙蓉 《智能系统学报》 CSCD 北大核心 2022年第2期276-285,共10页
识别多尺度目标是检测任务中的一项挑战,针对检测中的多尺度问题,提出自适应上下文特征的多尺度目标检测算法。针对不同尺度的目标需要不同大小感受野特征进行识别的问题,构建了一种多感受野特征提取网络,通过多分支并行空洞卷积,从高... 识别多尺度目标是检测任务中的一项挑战,针对检测中的多尺度问题,提出自适应上下文特征的多尺度目标检测算法。针对不同尺度的目标需要不同大小感受野特征进行识别的问题,构建了一种多感受野特征提取网络,通过多分支并行空洞卷积,从高层语义特征中挖掘标签中的上下文信息;针对不同尺度目标的语义特征出现在不同分辨率特征图中的问题,基于改进的通道注意力机制,提出自适应的特征融合网络,通过学习不同分辨率特征图之间的相关性,在全局语义特征中融合局部位置特征;利用不同尺度的特征图识别不同尺度的物体。在PASCAL VOC数据集上对本文算法进行验证,本文方法的检测精度达到了85.74%,相较于Faster RCNN检测精度提升约8.7%,相较于基线检测算法YOLOv3+提升约2.06%。 展开更多
关键词 机器视觉 目标检测 卷积神经网络 通道注意力 并行空洞卷积 多尺度特征融合 上下文特征 深度学习
下载PDF
轻量化沥青路面裂缝图像分割网络PIPNet
2
作者 封筠 毕健康 +1 位作者 霍一儒 李家宽 《计算机应用》 CSCD 北大核心 2024年第5期1520-1526,共7页
裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部... 裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码结构的轻量化沥青路面裂缝图像分割网络PIPNet(Parallel dilated convolution of Inverted Pyramid Network)。编码部分为倒金字塔结构,提出了具有不同空洞率的多分支并行空洞卷积模块,结合深度可分离卷积和普通卷积,逐级减少并行卷积的个数,对表层、中层及底层特征提取多尺度信息并降低模型复杂度;同时借鉴GhostNet特点,设计了逆残差轻量化模块,嵌入并行双池化注意力。在GAPs384数据集上的测试结果表明,PIPNet在参数量(Params)和计算量(MFLOPs)仅为ResNet50编码近1/6的情况下,平均交并比(mIoU)提高了1.10个百分点,且较轻量化GhostNet和SegNet分别高出4.14与9.95个百分点。实验结果表明,PIPNet在降低模型复杂度的同时,有着较好的裂缝分割性能,且对不同路面裂缝图像分割适应性良好。 展开更多
关键词 沥青路面图像 裂缝分割 轻量化神经网络 倒金字塔结构 并行空洞卷积
下载PDF
面向舱室声学环境的深度时域语音增强网络 被引量:1
3
作者 张琳 王海涛 +2 位作者 杨爽 曾向阳 陈克安 《声学学报》 EI CAS CSCD 北大核心 2023年第4期890-900,共11页
针对舱室环境单通道语音增强问题,设计了一种联合并行空洞卷积与分组卷积的深度时域语音增强网络。该网络以经典卷积时域音频分离网络为基础,在增强层设计中通过不同膨胀因子执行两路并行的空洞卷积操作,实现对长时信号的处理以更多地... 针对舱室环境单通道语音增强问题,设计了一种联合并行空洞卷积与分组卷积的深度时域语音增强网络。该网络以经典卷积时域音频分离网络为基础,在增强层设计中通过不同膨胀因子执行两路并行的空洞卷积操作,实现对长时信号的处理以更多地提取信号包络所包含的低频信息并抑制噪声混响所带来的时延问题,同时保留了局部的语音细节信息,提高对波形中所包含语音及背景噪声谐波信息的提取准确度;另外,利用分组卷积降低并行卷积操作所导致的网络规模扩大,使网络在具有良好增强效果的同时能够保持较小的网络规模及运算复杂度。以多类飞机舱室噪声为数据基础的实验表明,所设计的网络模块相较于基线网络提升了客观评价指标值,与现有其他常用网络的比较结果表明此方法在舱室环境的数据条件下可获得更好的主客观语音增强评价指标,且在高噪声级的线谱及窄带处具有更低的失真度。 展开更多
关键词 舱室环境 单通道语音增强 深度网络 并行空洞卷积 分组卷积
下载PDF
基于并行空洞卷积的2.5D胸腔CT气道自动分割 被引量:2
4
作者 蔡静 陈秋叶 +2 位作者 韦瑞华 蔡光雄 刘海华 《医学信息》 2021年第10期13-17,共5页
目的构建一种基于人工神经网络深度学习的胸腔CT气道的自动分割方法,以提高临床诊疗效率并减轻放射医师工作负担。方法对公开的60例胸腔CT数据集随机选取11000张气道CT图像进行处理,构建并行空洞卷积的浅层U-Net的神经网络模型,融合胸... 目的构建一种基于人工神经网络深度学习的胸腔CT气道的自动分割方法,以提高临床诊疗效率并减轻放射医师工作负担。方法对公开的60例胸腔CT数据集随机选取11000张气道CT图像进行处理,构建并行空洞卷积的浅层U-Net的神经网络模型,融合胸腔CT的横断面、矢状面和冠状面三个维度的解剖信息和全局结构连通性实现对胸腔气道CT图像端到端的自动分割。在此基础上,将三个断面分割概率图三维重构后,通过搭建的2.5D网络模型来学习每个断面体素概率图的加权系数,融合三维信息,得到最终分割的气道树。随机选取7000张CT图作为训练集建立分割模型,1800张为验证集,2200张作为测试集进行预测,计算预测结果与真实标签的分割相似度(DSC)、准确率(TPR)、假阳性率(FPR)以及网络参数数量。结果该气道自动分割算法DSC为0.935,TPR为0.948,FPR为0.0001,网络参数数量为482,149;该方法的精确度均优于传统U-Net网络和现有的一些其他神经网络气道分割方法。结论本文提出的气道自动分割算法能有效的完成胸腔CT的气道自动分割,提高了自动分割的准确率,为胸部气道辅助诊断和自动化分割提供了参考。 展开更多
关键词 胸腔CT图像 气道分割 三维融合 并行空洞卷积
下载PDF
一种基于RDNet的道路病害检测算法
5
作者 王鹏 王鹏飞 +3 位作者 游东旭 徐垚凡 白雨桭 刘加美 《人工智能与机器人研究》 2024年第3期487-496,共10页
道路病害的诊断是道路预防保养的一个关键步骤,为此本文提出了一种基于RDNet (Road Detection Network)道路病害检测算法。该算法从不同角度提高了特征的提取和表达能力,其中的改进包括跨阶段多分支卷积、残差并行空洞卷积以及自适应尺... 道路病害的诊断是道路预防保养的一个关键步骤,为此本文提出了一种基于RDNet (Road Detection Network)道路病害检测算法。该算法从不同角度提高了特征的提取和表达能力,其中的改进包括跨阶段多分支卷积、残差并行空洞卷积以及自适应尺度空间注意力模块等。通过在自建的道路病害数据集上进行端到端地训练,提高了算法的检测精度和泛化能力。实验结果表明,对比YOLOv5s,本文所提出的RDNet算法的平均精度均值mAP提高了1.3%,同时对于困难样本也有较好的检测结果,能够有效地应用于实际道路的维护工作中,从而提升道路病害检测的效率和准确性。The diagnosis of road diseases is a key step in road preventive maintenance, so this paper proposes a road disease detection algorithm based on RDNet (Road Detection Network). The algorithm improves the ability of feature extraction and expression from different perspectives, including crossstage partial multi-branch convolution, residual parallel dilated convolution, and adaptive scale spatial attention module. End-to-end training on the self-built road disease dataset improves the detection accuracy and generalization ability of the algorithm. Experimental results show that compared with YOLOv5s, the average precision of the RDNet algorithm proposed in this paper is increased by 1.3%, and the average precision mAP of the proposed RDNet algorithm is improved by 1.3%, and it also has good detection results for difficult samples, which can be effectively applied to the maintenance of actual roads, so as to improve the efficiency and accuracy of road disease detection. 展开更多
关键词 道路病害诊断 RDNet 跨阶段多分支卷积 残差并行空洞卷积、自适应尺度空间注意力机制
下载PDF
融合余弦退火与空洞卷积的遥感影像语义分割 被引量:2
6
作者 唐振超 韦蔚 +2 位作者 罗蔚然 胡洁 张东映 《遥感学报》 EI CSCD 北大核心 2023年第11期2579-2592,共14页
为了捕捉遥感影像中丰富的上下文信息与多尺度的地物信息,改进集成模型的策略,提高语义分割精度,提出一种融合周期递增余弦退火与多尺度空洞卷积的高分辨率遥感影像语义分割方法。方法引入多尺度并行的空洞卷积,有利于捕捉更大范围的上... 为了捕捉遥感影像中丰富的上下文信息与多尺度的地物信息,改进集成模型的策略,提高语义分割精度,提出一种融合周期递增余弦退火与多尺度空洞卷积的高分辨率遥感影像语义分割方法。方法引入多尺度并行的空洞卷积,有利于捕捉更大范围的上下文信息,在不增加参数的情况下,提高网络对多尺度对象的辨识能力;使用全连接条件随机场引入空间和边缘的上下文信息,提高网络对遥感影像的细节分割能力;引入周期递增的余弦退火策略调整学习率,获得合适数量的局部最优解,集成局部最优解进一步提升网络在像素上的分类能力。在Gaofen Image Dataset数据集上的实验结果表明,多尺度并行空洞卷积可以充分捕捉遥感影像上的多尺度地物信息,能有效辨识复杂对象;空间和边缘上下文信息的引入使语义分割对象的边界辨识更精准;周期递增余弦退火策略能明显减少集成模型的推理时间,模型的总体精度与Kappa系数均优于目前主流的语义分割模型。 展开更多
关键词 高分辨率遥感影像 语义分割 周期递增余弦退火 多尺度并行空洞卷积 目标提取 上下文学习 条件随机场 多尺度学习
原文传递
基于卷积神经网络的细长路面病害检测方法 被引量:6
7
作者 许慧青 陈斌 +2 位作者 王敬飞 陈志毅 覃健 《计算机应用》 CSCD 北大核心 2022年第1期265-272,共8页
针对细长路面病害人工检测耗时长和当前检测方法精度不足的问题,依据病害的弱语义特性和异常几何属性,提出了能够精准定位和分类出病害的二阶段细长路面病害检测方法Epd RCNN。首先,针对细长路面病害的弱语义特性,提出了一种复用低层特... 针对细长路面病害人工检测耗时长和当前检测方法精度不足的问题,依据病害的弱语义特性和异常几何属性,提出了能够精准定位和分类出病害的二阶段细长路面病害检测方法Epd RCNN。首先,针对细长路面病害的弱语义特性,提出了一种复用低层特征并反复融合不同阶段特征的骨干网络;其次,在训练过程中,使用一种符合病害几何属性分布的锚框机制来生成高质量的正样本供网络训练;然后,在单一高分辨率特征图上预测病害包围框,并针对该特征图使用并行级联空洞卷积模块来提升其多尺度特征表达能力;最后,针对形状各异的候选区域,使用由可变形感兴趣区域池化(RoI Pooling)和空间注意力模块组成的候选区域特征改良模块来提取符合病害几何属性的候选区域特征。实验结果表明,所提方法在光照充足图像上的平均准确率均值(mAP)为0.907,在存在光照问题图像上的mAP为0.891,综合mAP为0.899,表明该方法具有良好的检测性能和对光照的鲁棒性。 展开更多
关键词 细长路面病害 卷积神经网络 包围框 几何属性 并行级联空洞卷积 候选区域特征 空间注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部