针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面...针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面特征点匹配较难的问题,通过计算平面单应性矩阵获取移动机器人的位姿变化。实验结果表明该算法具有较高的精度和实时性。展开更多
Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching m...Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching method by post-processing its result with the concept of similarity, and then get the lines matching according to feature points matching based on the approximate invariance of the features’ distribution between two images. Finally, we group all feature points into subsets in terms of their geometric relations with feature lines as initial sets to estimate homography rather than by a random search strategy (like RANSAC) as in most existing methods. The proposed method is especially suitable to detecting planes in man-made scenes. This method is validated on real images.展开更多
文摘针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面特征点匹配较难的问题,通过计算平面单应性矩阵获取移动机器人的位姿变化。实验结果表明该算法具有较高的精度和实时性。
文摘Plane detection is a prerequisite for many computer vision tasks. This paper proposes a new method which can automatically detect planes from two projective images. Firstly, we modify Scott’s feature point matching method by post-processing its result with the concept of similarity, and then get the lines matching according to feature points matching based on the approximate invariance of the features’ distribution between two images. Finally, we group all feature points into subsets in terms of their geometric relations with feature lines as initial sets to estimate homography rather than by a random search strategy (like RANSAC) as in most existing methods. The proposed method is especially suitable to detecting planes in man-made scenes. This method is validated on real images.