期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于深度学习的煤矸石检测方法 被引量:10
1
作者 赵学军 李建 《矿业科学学报》 CSCD 2021年第6期730-736,共7页
针对选煤场的煤矸分离中基于计算机视觉的煤矸石检测方法需要复杂的人工特征设计过程,在YOLOv3目标检测模型基础上,提出一种基于深度学习的端到端煤矸石检测方法。采用深度可分离卷积以及转置卷积对模型的骨干网络进行改进,以缩减模型... 针对选煤场的煤矸分离中基于计算机视觉的煤矸石检测方法需要复杂的人工特征设计过程,在YOLOv3目标检测模型基础上,提出一种基于深度学习的端到端煤矸石检测方法。采用深度可分离卷积以及转置卷积对模型的骨干网络进行改进,以缩减模型大小并提高模型运行速度;加入空间金字塔池化模块,改善模型的特征融合能力;引入平衡L1损失函数和距离交并比损失函数,加速模型收敛并提高定位准确性。研究结果表明,所提算法能够实时精准地检测出煤与矸石混合体中的矸石,为提高煤炭质量、改进分拣效率提供有效保障。 展开更多
关键词 深度学习 YOlOv3 平衡l1损失函数 距离交并比损失函数 煤矸石检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部