针对传统语音端点检测方法在噪声环境下鲁棒性较差以及对语音段检测效果不佳的问题,提出一种多特征融合的语音端点检测方法.首先,提取带噪语音信号的子带谱熵特征和基于Mel频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)的投...针对传统语音端点检测方法在噪声环境下鲁棒性较差以及对语音段检测效果不佳的问题,提出一种多特征融合的语音端点检测方法.首先,提取带噪语音信号的子带谱熵特征和基于Mel频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)的投影特征,并将Gammatone频率倒谱系数的第一维系数GFCC0特征应用到语音端点检测任务中;然后,对3类特征进行自适应加权融合,得到适用于端点检测的融合特征;最后,采用模糊C均值聚类自适应估计门限阈值,再通过双门限法得到端点检测的结果.所提方法和已有传统方法相比,在7种噪声环境下均取得了更好的端点检测结果,提升了语音端点检测的准确率,特别是在volvo噪声环境下的端点检测准确率可以达到94.5%以上.展开更多
文摘针对传统语音端点检测方法在噪声环境下鲁棒性较差以及对语音段检测效果不佳的问题,提出一种多特征融合的语音端点检测方法.首先,提取带噪语音信号的子带谱熵特征和基于Mel频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)的投影特征,并将Gammatone频率倒谱系数的第一维系数GFCC0特征应用到语音端点检测任务中;然后,对3类特征进行自适应加权融合,得到适用于端点检测的融合特征;最后,采用模糊C均值聚类自适应估计门限阈值,再通过双门限法得到端点检测的结果.所提方法和已有传统方法相比,在7种噪声环境下均取得了更好的端点检测结果,提升了语音端点检测的准确率,特别是在volvo噪声环境下的端点检测准确率可以达到94.5%以上.