期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于tPSO-BPNN的赖氨酸发酵软测量 被引量:19
1
作者 黄丽 孙玉坤 +2 位作者 嵇小辅 黄永红 王博 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第10期2317-2321,共5页
赖氨酸发酵过程是一个复杂的非线性强耦合动态过程。某些发酵过程关键生物参数(如菌体浓度、基质浓度、产物浓度)难以实时在线检测。采用软测量技术可解决这一难题。建立了用于生物参数状态预估的tPSO-BPNN软测量模型。针对BPNN软测量... 赖氨酸发酵过程是一个复杂的非线性强耦合动态过程。某些发酵过程关键生物参数(如菌体浓度、基质浓度、产物浓度)难以实时在线检测。采用软测量技术可解决这一难题。建立了用于生物参数状态预估的tPSO-BPNN软测量模型。针对BPNN软测量模型易陷入局部极小值,进化后期收敛速度慢以及全局搜索能力弱等缺陷,tPSO-BPNN软测量模型采用带极值扰动粒子群(tPSO)算法优化BP神经网络权值和阈值。仿真结果表明,tPSO-BPNN软测量模型的性能优于BPNN软测量模型,能够准确预估赖氨酸发酵过程中的关键参数,具有较高的精度和良好的应用前景。 展开更多
关键词 极值扰动粒子优化 赖氨酸 生化参数 软测量
下载PDF
基于PSO算法的SOR最优松弛因子选取研究 被引量:1
2
作者 薛丹 姚若侠 《计算机技术与发展》 2020年第12期15-20,共6页
目前选取逐次超松弛迭代法(SOR)最优松弛因子的基本思路是:在区间(0,2)上,根据确定的分割策略,选取分割点的值作为松弛因子来计算相应的SOR迭代次数,将小于预设的SOR迭代次数阈值的松弛因子作为最优解返回,例如二分比较法、黄金分割法... 目前选取逐次超松弛迭代法(SOR)最优松弛因子的基本思路是:在区间(0,2)上,根据确定的分割策略,选取分割点的值作为松弛因子来计算相应的SOR迭代次数,将小于预设的SOR迭代次数阈值的松弛因子作为最优解返回,例如二分比较法、黄金分割法、逐步搜索法等,其缺陷在于不易找到全局最优松弛因子且对参数依赖较大。为克服传统策略解决该问题的不足,受粒子群优化算法及其在不同场景成功应用的启发,提出利用基本粒子群优化算法(bPSO)、简化粒子群优化算法(sPSO)、带极值扰动粒子群优化算法(tPSO)和带极值扰动的简化粒子群优化算法(tsPSO)来搜索SOR迭代法最优松弛因子。通过对两个不同的线性方程组的实证测试,验证了四种算法在选取SOR最优松弛因子问题上的有效性。 展开更多
关键词 粒子优化算法 简化粒子优化算法 极值扰动粒子优化算法 SOR迭代法 最优松弛因子
下载PDF
优化基于近红外光谱的联合间隔偏最小二乘法建模检测芝麻油掺伪含量 被引量:6
3
作者 陈洪亮 曾山 王斌 《中国油脂》 CAS CSCD 北大核心 2020年第2期86-90,共5页
应用近红外光谱(NIR)分析技术建立测定芝麻油中大豆油含量的定量分析模型。基于32个含量梯度共384个掺伪芝麻油样品的近红外光谱,首先采用标准正态变量变换(SNV)对光谱进行预处理,再采用无信息变量消除法(UVE)初步筛选波长变量,然后结... 应用近红外光谱(NIR)分析技术建立测定芝麻油中大豆油含量的定量分析模型。基于32个含量梯度共384个掺伪芝麻油样品的近红外光谱,首先采用标准正态变量变换(SNV)对光谱进行预处理,再采用无信息变量消除法(UVE)初步筛选波长变量,然后结合联合间隔偏最小二乘法(SiPLS)和带极值扰动的简化粒子群优化算法(tsPSO)建立芝麻油中大豆油掺伪含量预测模型,经特征波段选取后建立的模型变量减少,波长变量由451个减少到219个,训练集和测试集相关系数分别为0.9998和0.9919,均方根误差分别为4.39E-2和3.99E-2。结果表明,该方法能够作为芝麻油中大豆油掺伪含量的快速检测方法。此外,该方法也可应用到芝麻油中掺入其他低价值油的掺伪含量检测中。 展开更多
关键词 近红外光谱 无信息变量消除法 联合间隔偏最小二乘法 极值扰动的简化粒子优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部