光纤复合架空地线(OPGW)故障频发的原因与光缆局部受到的应力有直接关系,为了实现对OPGW光缆的在线应变监测,搭建了长距离布里渊光时域分析(BOTDA)和布里渊光时域反射(BOTDR)系统,并对重覆冰区域运行年限超过15年的在运95.14 km OPGW进...光纤复合架空地线(OPGW)故障频发的原因与光缆局部受到的应力有直接关系,为了实现对OPGW光缆的在线应变监测,搭建了长距离布里渊光时域分析(BOTDA)和布里渊光时域反射(BOTDR)系统,并对重覆冰区域运行年限超过15年的在运95.14 km OPGW进行了应变检测和分析。通过对同一段光缆的对比测量,结果表明:BOTDA系统具有更长的测量距离、更高的空间分辨率与更高的测量精度,能准确辨别引下线并识别零应变参考点,可以实现温度和应变信息的准确分离。在两个站点的距离超过BOTDA系统的测量量程时,可以使用BOTDR系统从光缆两端分别测量以覆盖全部光缆。同时,BOTDR系统展现出单端测量的优势,在断纤故障发生时,BOTDR系统可不影响断点之前的线路测量。在同一条OPGW光缆线路上通过多维度的对比,分析了两种技术在OPGW光缆监测中的优劣势,为分布式光纤传感技术在电力系统中的应用提供参考。展开更多
文摘光纤复合架空地线(OPGW)故障频发的原因与光缆局部受到的应力有直接关系,为了实现对OPGW光缆的在线应变监测,搭建了长距离布里渊光时域分析(BOTDA)和布里渊光时域反射(BOTDR)系统,并对重覆冰区域运行年限超过15年的在运95.14 km OPGW进行了应变检测和分析。通过对同一段光缆的对比测量,结果表明:BOTDA系统具有更长的测量距离、更高的空间分辨率与更高的测量精度,能准确辨别引下线并识别零应变参考点,可以实现温度和应变信息的准确分离。在两个站点的距离超过BOTDA系统的测量量程时,可以使用BOTDR系统从光缆两端分别测量以覆盖全部光缆。同时,BOTDR系统展现出单端测量的优势,在断纤故障发生时,BOTDR系统可不影响断点之前的线路测量。在同一条OPGW光缆线路上通过多维度的对比,分析了两种技术在OPGW光缆监测中的优劣势,为分布式光纤传感技术在电力系统中的应用提供参考。