期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
支持向量机在工业过程中的应用
被引量:
9
1
作者
陈文杰
王晶
《计算机与应用化学》
CAS
CSCD
北大核心
2005年第3期195-200,共6页
支持向量机(SVM)是一种基于统计学习理论,针对小样本学习问题的通用学习算法,它采用结构风险最小化(Structural risk minimization,SRM)准则,大大提高了模型的泛化能力,成功地解决了神经网络的过学习问题。目前主要应用在模式识别领域,...
支持向量机(SVM)是一种基于统计学习理论,针对小样本学习问题的通用学习算法,它采用结构风险最小化(Structural risk minimization,SRM)准则,大大提高了模型的泛化能力,成功地解决了神经网络的过学习问题。目前主要应用在模式识别领域,在工业过程中的应用相对较少。本文首先从理论研究、算法结构、参数选择和扩展SVM 4个方面详细介绍了近些年来支持向量机的研究进展;然后对SVM在工业过程中的应用现状进行分析,指出进一步研究的方向。
展开更多
关键词
支持向量机
核函数
工业
过程
应用
原文传递
题名
支持向量机在工业过程中的应用
被引量:
9
1
作者
陈文杰
王晶
机构
北京化工大学自动化研究所
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2005年第3期195-200,共6页
文摘
支持向量机(SVM)是一种基于统计学习理论,针对小样本学习问题的通用学习算法,它采用结构风险最小化(Structural risk minimization,SRM)准则,大大提高了模型的泛化能力,成功地解决了神经网络的过学习问题。目前主要应用在模式识别领域,在工业过程中的应用相对较少。本文首先从理论研究、算法结构、参数选择和扩展SVM 4个方面详细介绍了近些年来支持向量机的研究进展;然后对SVM在工业过程中的应用现状进行分析,指出进一步研究的方向。
关键词
支持向量机
核函数
工业
过程
应用
Keywords
support vector machine(SVM)
kernal function
application in industrial process
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
支持向量机在工业过程中的应用
陈文杰
王晶
《计算机与应用化学》
CAS
CSCD
北大核心
2005
9
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部