期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
嵌入式粒子群-遗传算法的水质COD检测特征波长优化算法 被引量:7
1
作者 漆伟 冯鹏 +3 位作者 魏彪 郑冬 于婷婷 刘鹏勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第1期194-200,共7页
基于紫外-可见光谱法的水质测量中,光谱信号易受到系统噪声干扰、悬浮物散射干扰,且存在信息冗余、多重共线性等特征,导致水质COD测量中特征波长的选取产生较大偏差。因此,提出了基于嵌入式粒子群-遗传(EPSO_GA)算法的水质COD检测特征... 基于紫外-可见光谱法的水质测量中,光谱信号易受到系统噪声干扰、悬浮物散射干扰,且存在信息冗余、多重共线性等特征,导致水质COD测量中特征波长的选取产生较大偏差。因此,提出了基于嵌入式粒子群-遗传(EPSO_GA)算法的水质COD检测特征波长优化算法,以提高波长选择精度。为验证检测特征波长优化算法的可行性,采集了某高校池塘水样、生活污水和排水沟水样的光谱数据,利用EPSO_GA算法对预处理后的光谱数据选取特征波长。EPSO_GA算法采用实数编码方法实现了粒子群(PSO)优化算法和遗传(GA)优化算法的统一编码,在PSO算法中更新粒子时嵌入GA算法的选择、交叉、变异等操作,改善了这两种算法各自在光谱波长特征选取问题上的局限性。将EPSO_GA算法选取的特征波长结合偏最小二乘法(PLS)构建了EPSO_GA_PLS的水质COD预测模型,并且与传统的PS O算法、GA算法选取特征波长建立的PSO_PLS、GA_PLS和全光谱构建的PLS水质COD预测模型做了对比。结果表明:与PSO_PLS,GA_PLS和全光谱构建的PLS水质COD预测模型相比,EPSO_GA改善了PSO算法和GA算法在光谱特征波长选择中早熟和收敛速度慢的问题,降低了全光谱构建PLS水质COD预测模型的复杂度,提高了模型的预测精度。基于EPSO_GA算法建立的EPSO_GA_PLS水质COD预测模型,均方根误差降到了0.2123,预测精度增加到0.9993,可以快速定量检测水质COD,为紫外-可见光谱法测COD提供了更好的预测模型。 展开更多
关键词 紫外-可见光谱法 嵌入式粒子-遗传算法 波长特征选择 偏最小二乘法 化学需氧量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部