S-粗集(singular rough sets)是把动态特征引入到Z.Pawlak粗集中对其加以改进而提出的,S-粗集具有动态特征。S-粗集具有3种形式:单向S-粗集(one direction singular rough sets)、单向S-粗集对偶(dual of one direction singular rough ...S-粗集(singular rough sets)是把动态特征引入到Z.Pawlak粗集中对其加以改进而提出的,S-粗集具有动态特征。S-粗集具有3种形式:单向S-粗集(one direction singular rough sets)、单向S-粗集对偶(dual of one direction singular rough sets)与双向S-粗集(two direction singular rough sets);在一定条件下,单向S-粗集、单向S-粗集对偶与双向S-粗集被还原成Z.Pawlak粗集。利用单向S-粗集和单向S-粗集对偶给出具有属性析取特征的动态数据智能挖掘与应用;属性析取是数据具有的逻辑特征之一。主要结果是:利用单向S-粗集、单向S-粗集对偶结构,给出属性析取萎缩-扩张特征的动态数据生成与它的属性析取萎缩-扩张关系;给出数据推理与推理模型;利用数据推理给出动态数据智能挖掘定理;利用这些理论结果,给出动态数据智能挖掘-智能认知的应用。展开更多
文摘S-粗集(singular rough sets)是把动态特征引入到Z.Pawlak粗集中对其加以改进而提出的,S-粗集具有动态特征。S-粗集具有3种形式:单向S-粗集(one direction singular rough sets)、单向S-粗集对偶(dual of one direction singular rough sets)与双向S-粗集(two direction singular rough sets);在一定条件下,单向S-粗集、单向S-粗集对偶与双向S-粗集被还原成Z.Pawlak粗集。利用单向S-粗集和单向S-粗集对偶给出具有属性析取特征的动态数据智能挖掘与应用;属性析取是数据具有的逻辑特征之一。主要结果是:利用单向S-粗集、单向S-粗集对偶结构,给出属性析取萎缩-扩张特征的动态数据生成与它的属性析取萎缩-扩张关系;给出数据推理与推理模型;利用数据推理给出动态数据智能挖掘定理;利用这些理论结果,给出动态数据智能挖掘-智能认知的应用。