期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于并行卷积网络信息融合的层级多标签文本分类算法
被引量:
3
1
作者
易流
耿新宇
白静
《计算机科学》
CSCD
北大核心
2023年第9期278-286,共9页
自然语言处理是人工智能与机器学习领域的重要方向,它的目标是利用计算机技术来分析、理解和处理自然语言。自然语言处理的一个重点研究方向是从文本内容中获取信息,并且按照一定的标签体系或标准将文本内容进行自动分类标记。相比于单...
自然语言处理是人工智能与机器学习领域的重要方向,它的目标是利用计算机技术来分析、理解和处理自然语言。自然语言处理的一个重点研究方向是从文本内容中获取信息,并且按照一定的标签体系或标准将文本内容进行自动分类标记。相比于单一标签文本分类而言,多标签文本分类具有一条数据属于多个标签的特点,使得更难从文本信息中获得多类别的数据特征。层级多标签文本分类又是其中的一个特别的类别,它将文本中的信息对应划分到不同的类别标签体系中,各个类别标签体系又具有互相依赖的层级关系。因此,如何利用其内部标签体系中的层级关系更准确地将文本分类到对应的标签中,也就成了解决问题的关键。为此,提出了一种基于并行卷积网络信息融合的层级多标签文本分类算法。首先,该算法利用BERT模型对文本信息进行词嵌入,接着利用自注意力机制增强文本信息的语义特征,然后利用不同卷积核对文本数据特征进行抽取。通过使用阈值控制树形结构建立上下位的节点间关系,更有效地利用了文本的多方位语义信息实现层级多标签文本分类任务。在公开数据集Kanshan-Cup和CI企业信息数据集上的结果表明,该算法在宏准确率、宏召回率与微F1值3种评价指标上均优于主流的TextCNN,TextRNN,FastText等对比模型,具有较好的层级多标签文本分类效果。
展开更多
关键词
层级
多
标签
文本分类
预训练模型
注意力机制
卷积神经网络
树形结构
下载PDF
职称材料
MSML-BERT模型的层级多标签文本分类方法研究
被引量:
5
2
作者
黄伟
刘贵全
《计算机工程与应用》
CSCD
北大核心
2022年第15期191-201,共11页
层级多标签文本分类相比普通的多标签文本分类更具有挑战性,因为文本的多个标签组织成树状的层次结构。当前方法使用相同的模型结构来预测不同层级的标签,忽略了它们之间的差异性和多样性。并且没有充分地建模层级依赖关系,造成各层级...
层级多标签文本分类相比普通的多标签文本分类更具有挑战性,因为文本的多个标签组织成树状的层次结构。当前方法使用相同的模型结构来预测不同层级的标签,忽略了它们之间的差异性和多样性。并且没有充分地建模层级依赖关系,造成各层级标签尤其是下层长尾标签的预测性能差,且会导致标签不一致性问题。为了解决以上问题,将多任务学习架构引入,提出了MSML-BERT模型。该模型将标签结构中每一层的标签分类网络视为一个学习任务,通过任务间知识的共享和传递,提高各层级任务的性能。基于此,设计了多尺度特征抽取模块,用于捕捉不同尺度和粒度的特征以形成不同层级需要的各种知识。进一步,设计了多层级信息传播模块,用于充分建模层级依赖,在不同层级之间传递知识,以帮助下层任务。在该模块中,设计了层次化门控机制,为了过滤不同层级任务之间的知识流动。在RCV1-V2、NYT和WOS数据集上进行了充分的实验,结果显示该模型的总体表现尤其是在下层长尾标签上的表现超过了其他主流模型,并且能维持较低的标签不一致比率。
展开更多
关键词
层级
多
标签
文本分类
多
任务学习架构
BERT
多
尺度特征抽取模块
多
层级
信息传播模块
下载PDF
职称材料
面向分级阅读的儿童读物层级多标签分类研究
3
作者
成全
董佳
《数据分析与知识发现》
CSCD
北大核心
2023年第7期156-169,共14页
【目的】构建儿童读物层级多标签分类模型,实现对儿童读物的自动化分类,以引导儿童读者选择适合自身发展情况的读物。【方法】将分级阅读的理念具化成儿童读物层级分类标签体系,采用深度学习技术构建ERNIE-HAM模型,并将其应用于儿童读...
【目的】构建儿童读物层级多标签分类模型,实现对儿童读物的自动化分类,以引导儿童读者选择适合自身发展情况的读物。【方法】将分级阅读的理念具化成儿童读物层级分类标签体系,采用深度学习技术构建ERNIE-HAM模型,并将其应用于儿童读物的层级多标签文本分类。【结果】通过对比4种预训练模型,ERNIE-HAM模型在儿童读物层级分类的第二层级、第三层级分类中具有较好的表现;对比单层级算法,层级算法在第二层级和第三层级的AU(PRC)值都提升了约11个百分点;对比HFT-CNN和HMCN两个层级多标签分类模型,ERNIE-HAM模型在第三层级的分类结果中AU(PRC)值分别提升12.79和6.48个百分点。【局限】ERNIE-HAM模型的整体分类效果有待进一步提升,未来在数据集的体量扩充和算法设计上需要进一步完善和探索。【结论】ERNIE-HAM模型在儿童读物层级多标签分类任务上具有有效性。
展开更多
关键词
分级阅读
儿童读物分
类
层级
多
标签
文本分类
分
类
体系
原文传递
题名
基于并行卷积网络信息融合的层级多标签文本分类算法
被引量:
3
1
作者
易流
耿新宇
白静
机构
西南石油大学计算机科学学院
出处
《计算机科学》
CSCD
北大核心
2023年第9期278-286,共9页
基金
四川省科技计划项目(2022NSFSC0555)。
文摘
自然语言处理是人工智能与机器学习领域的重要方向,它的目标是利用计算机技术来分析、理解和处理自然语言。自然语言处理的一个重点研究方向是从文本内容中获取信息,并且按照一定的标签体系或标准将文本内容进行自动分类标记。相比于单一标签文本分类而言,多标签文本分类具有一条数据属于多个标签的特点,使得更难从文本信息中获得多类别的数据特征。层级多标签文本分类又是其中的一个特别的类别,它将文本中的信息对应划分到不同的类别标签体系中,各个类别标签体系又具有互相依赖的层级关系。因此,如何利用其内部标签体系中的层级关系更准确地将文本分类到对应的标签中,也就成了解决问题的关键。为此,提出了一种基于并行卷积网络信息融合的层级多标签文本分类算法。首先,该算法利用BERT模型对文本信息进行词嵌入,接着利用自注意力机制增强文本信息的语义特征,然后利用不同卷积核对文本数据特征进行抽取。通过使用阈值控制树形结构建立上下位的节点间关系,更有效地利用了文本的多方位语义信息实现层级多标签文本分类任务。在公开数据集Kanshan-Cup和CI企业信息数据集上的结果表明,该算法在宏准确率、宏召回率与微F1值3种评价指标上均优于主流的TextCNN,TextRNN,FastText等对比模型,具有较好的层级多标签文本分类效果。
关键词
层级
多
标签
文本分类
预训练模型
注意力机制
卷积神经网络
树形结构
Keywords
Hierarchical multi-label text classification
Pre-training model
Attention mechanism
Convolutional neural network
Tree structure
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
MSML-BERT模型的层级多标签文本分类方法研究
被引量:
5
2
作者
黄伟
刘贵全
机构
中国科学技术大学大数据学院
中国科学技术大学计算机科学与技术学院
中国科学技术大学大数据分析与应用安徽省重点实验室
出处
《计算机工程与应用》
CSCD
北大核心
2022年第15期191-201,共11页
基金
国家重点研发计划(2018YFB1801105)。
文摘
层级多标签文本分类相比普通的多标签文本分类更具有挑战性,因为文本的多个标签组织成树状的层次结构。当前方法使用相同的模型结构来预测不同层级的标签,忽略了它们之间的差异性和多样性。并且没有充分地建模层级依赖关系,造成各层级标签尤其是下层长尾标签的预测性能差,且会导致标签不一致性问题。为了解决以上问题,将多任务学习架构引入,提出了MSML-BERT模型。该模型将标签结构中每一层的标签分类网络视为一个学习任务,通过任务间知识的共享和传递,提高各层级任务的性能。基于此,设计了多尺度特征抽取模块,用于捕捉不同尺度和粒度的特征以形成不同层级需要的各种知识。进一步,设计了多层级信息传播模块,用于充分建模层级依赖,在不同层级之间传递知识,以帮助下层任务。在该模块中,设计了层次化门控机制,为了过滤不同层级任务之间的知识流动。在RCV1-V2、NYT和WOS数据集上进行了充分的实验,结果显示该模型的总体表现尤其是在下层长尾标签上的表现超过了其他主流模型,并且能维持较低的标签不一致比率。
关键词
层级
多
标签
文本分类
多
任务学习架构
BERT
多
尺度特征抽取模块
多
层级
信息传播模块
Keywords
hierarchical multi-label text classification
multi-task learning architecture
BERT
multi-scale feature extrac-tion module
multi-layer information propagation module
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
面向分级阅读的儿童读物层级多标签分类研究
3
作者
成全
董佳
机构
福州大学经济与管理学院
出处
《数据分析与知识发现》
CSCD
北大核心
2023年第7期156-169,共14页
基金
国家社会科学基金项目(项目编号:19BTQ072)的研究成果之一。
文摘
【目的】构建儿童读物层级多标签分类模型,实现对儿童读物的自动化分类,以引导儿童读者选择适合自身发展情况的读物。【方法】将分级阅读的理念具化成儿童读物层级分类标签体系,采用深度学习技术构建ERNIE-HAM模型,并将其应用于儿童读物的层级多标签文本分类。【结果】通过对比4种预训练模型,ERNIE-HAM模型在儿童读物层级分类的第二层级、第三层级分类中具有较好的表现;对比单层级算法,层级算法在第二层级和第三层级的AU(PRC)值都提升了约11个百分点;对比HFT-CNN和HMCN两个层级多标签分类模型,ERNIE-HAM模型在第三层级的分类结果中AU(PRC)值分别提升12.79和6.48个百分点。【局限】ERNIE-HAM模型的整体分类效果有待进一步提升,未来在数据集的体量扩充和算法设计上需要进一步完善和探索。【结论】ERNIE-HAM模型在儿童读物层级多标签分类任务上具有有效性。
关键词
分级阅读
儿童读物分
类
层级
多
标签
文本分类
分
类
体系
Keywords
Graded Reading
Classification of Children’s Books
Hierarchical Multi-label Text Classification
Classification System
分类号
G254 [文化科学—图书馆学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于并行卷积网络信息融合的层级多标签文本分类算法
易流
耿新宇
白静
《计算机科学》
CSCD
北大核心
2023
3
下载PDF
职称材料
2
MSML-BERT模型的层级多标签文本分类方法研究
黄伟
刘贵全
《计算机工程与应用》
CSCD
北大核心
2022
5
下载PDF
职称材料
3
面向分级阅读的儿童读物层级多标签分类研究
成全
董佳
《数据分析与知识发现》
CSCD
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部