为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范...为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。展开更多
为了解决在采用局部线性模型树(LOcal Linear MOdel Tree,LOLIMOT)辨识发动机非线性系统时,出现的辨识网络复杂和模型精度问题,提出一种将非线性自回归滑动平均模型(NARMAX)和LOLIMOT网络融合的改进神经网络结构.基于非线性自回归滑动...为了解决在采用局部线性模型树(LOcal Linear MOdel Tree,LOLIMOT)辨识发动机非线性系统时,出现的辨识网络复杂和模型精度问题,提出一种将非线性自回归滑动平均模型(NARMAX)和LOLIMOT网络融合的改进神经网络结构.基于非线性自回归滑动平均模型NARMAX的思想,将原始局部子模型的线性函数替换为非线性多项式函数,并基于AIC(Akaike information criterion)显著性准则的前向选择法对非线性项按照重要性程度进行选择,将简化后的非线性函数用于构建原始LOLIMOT模型局部子模型,形成一种改进LOLIMOT网络模型.通过某航空发动机过渡态下的辨识实验表明,改进算法能够将原LOLIMOT模型复杂度降低46%左右,相对预测精度提高50%以上,验证了在对发动机模型复杂度和精度要求较高的领域,改进模型是一种更加有效的网络结构.展开更多
文摘为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。
文摘为了解决在采用局部线性模型树(LOcal Linear MOdel Tree,LOLIMOT)辨识发动机非线性系统时,出现的辨识网络复杂和模型精度问题,提出一种将非线性自回归滑动平均模型(NARMAX)和LOLIMOT网络融合的改进神经网络结构.基于非线性自回归滑动平均模型NARMAX的思想,将原始局部子模型的线性函数替换为非线性多项式函数,并基于AIC(Akaike information criterion)显著性准则的前向选择法对非线性项按照重要性程度进行选择,将简化后的非线性函数用于构建原始LOLIMOT模型局部子模型,形成一种改进LOLIMOT网络模型.通过某航空发动机过渡态下的辨识实验表明,改进算法能够将原LOLIMOT模型复杂度降低46%左右,相对预测精度提高50%以上,验证了在对发动机模型复杂度和精度要求较高的领域,改进模型是一种更加有效的网络结构.