-
题名基于多特征组合的细粒度图像分类方法
被引量:5
- 1
-
-
作者
邹承明
罗莹
徐晓龙
-
机构
交通物联网技术湖北省重点实验室(武汉理工大学)
武汉理工大学计算机科学与技术学院
-
出处
《计算机应用》
CSCD
北大核心
2018年第7期1853-1856,1861,共5页
-
基金
中央高校基本科研业务费专项(2017-zy-084)~~
-
文摘
针对单一特征表示的局限性会导致细粒度图像分类准确度不高的问题,提出了一种基于卷积神经网络(CNN)和尺度不变特征转换(SIFT)的多特征组合表示方法,综合考虑对目标整体、关键部位和关键点的特征提取。首先,分别以细粒度图像库中的目标整体和头部区域训练CNN得到两个网络模型,用来提取目标的整体和头部CNN特征;然后,对图像库中所有目标区域提取SIFT关键点并通过K均值(K-means)聚类生成码本,再将每个目标区域的SIFT描述子通过局部特征聚合描述符(VLAD)参照码本编码为特征向量;最后,组合多种特征作为最终的特征表示,采用支持向量机(SVM)对细粒度图像进行分类。使用该方法在CUB-200-2011数据库上进行实验,并与单一的特征表示方法进行了比较。实验结果表明,该方法与基于单一CNN特征的细粒度图像分类相比提升了13.31%的准确度,证明了多特征组合对细粒度图像分类的积极作用。
-
关键词
卷积神经网络
尺度不变特征转换
K均值聚类
局部特征聚合描述符
细粒度图像分类
-
Keywords
Convolutional Neural Network (CNN)
Scale Invariant Feature Transform (SIFT)
K-means clustering Vector of Locally Aggregated Descriptors (VLAD)
fine-grained image classification
-
分类号
TP391.413
[自动化与计算机技术—计算机应用技术]
TP18
[自动化与计算机技术—计算机科学与技术]
-