期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于k-medoids聚类算法的低压台区线损异常识别方法 被引量:8
1
作者 薛明志 陈商玥 高强 《天津理工大学学报》 2021年第1期26-31,共6页
针对低压台区线损异常情况的判断问题,以电力公司用电信息采集系统采集的日线损率数据为基础,提出了一种基于k-medoids聚类算法的低压台区线损异常识别方法,并以某地区819个台区为例进行算法可靠性的验证.首先应用局部异常因子LOF算法... 针对低压台区线损异常情况的判断问题,以电力公司用电信息采集系统采集的日线损率数据为基础,提出了一种基于k-medoids聚类算法的低压台区线损异常识别方法,并以某地区819个台区为例进行算法可靠性的验证.首先应用局部异常因子LOF算法对低压台区异常日线损率数据进行判断、筛选和剔除;其次应用k-medoids聚类算法对日线损率数据进行聚类分析,得到低压台区日线损率数据的聚类中心点和欧氏距离,从而实现低压台区线损异常情况的判断;最后通过819个低压台区的实际数据验证算法的合理性.结果表明,算法能够对低压台区线损的异常情况做出准确的判断. 展开更多
关键词 低压台区 k-medoids聚类算法 局部异常因子lof算法 日线损率 聚类中心点 欧氏距离
下载PDF
基于数据分析方法的动力电池系统滥用故障诊断 被引量:6
2
作者 柏云耀 邹时波 李顶根 《新能源进展》 2020年第1期1-5,共5页
为了提高对于电池滥用故障的检测能力和诊断效率,针对电动汽车动力电池系统以电压、电流和电功率作为主要控制参数的特点,提出了一种基于数据分析方法的动力电池系统滥用故障检测方法。该方法采用局部异常因子(LOF)算法和感知器网络,研... 为了提高对于电池滥用故障的检测能力和诊断效率,针对电动汽车动力电池系统以电压、电流和电功率作为主要控制参数的特点,提出了一种基于数据分析方法的动力电池系统滥用故障检测方法。该方法采用局部异常因子(LOF)算法和感知器网络,研究由于电池滥用对电压、电流等数据的一致性和离散分布的影响。结果表明,由于故障造成的异常数据点,其LOF值远大于正常数据,在感知器分类结果中通常输出为"0"。利用LOF算法可以有效找出数据集中的异常数据点,利用LOF算法处理后的数据对感知器进行训练,可以对数据集进行快速分类,进而判断电池是否发生了滥用故障。该方法可为动力电池系统故障检测提供参考。 展开更多
关键词 电动汽车 动力电池 滥用故障 局部异常因子(lof)算法 感知器网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部