期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
关于优化K-medoids聚类算法搜索策略研究 被引量:4
1
作者 朱纯 吴建华 潘毅 《计算机仿真》 CSCD 北大核心 2016年第10期244-248,277,共6页
由于传统K-medoids聚类算法对初始中心点敏感,计算迭代次数较高,存在聚类准确率不够高等缺点。为了解决中心点敏感问题,首先利用密度思想为数据集中每个对象建立一个ε0-领域,利用最大最小距离法遴选出K个密度大且距离较远的ε0-领域,... 由于传统K-medoids聚类算法对初始中心点敏感,计算迭代次数较高,存在聚类准确率不够高等缺点。为了解决中心点敏感问题,首先利用密度思想为数据集中每个对象建立一个ε0-领域,利用最大最小距离法遴选出K个密度大且距离较远的ε0-领域,把对应的ε0-领域的核心对象作为聚类算法的K个初始中心点;然后,为了解决传统K-medoids聚类算法的迭代次数较高、全局搜索的盲目性,在获取有效初始中心点的前提下,提出了以初始中心点为核心进行ε0-领域搜索更新策略,用来减少聚类算法的中心点更新迭代次数;同时,为了解决传统K-medoids聚类算法聚类准确率较低等缺点,提出了赋予簇内距离和簇间距离不同权重的准则函数,增强聚类算法的评价标准。改进后的算法在Iris和Wine数据集上进行测试,实验结果表明,初始中心点分别位于不同的簇中,降低了算法的迭代次数,提高了聚类准确率。 展开更多
关键词 聚类算法 局部密度区域 初始中心点 领域搜索策略 加权准则函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部